metadata
license: apache-2.0
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: sew-d-small-100k-ft-timit
results: []
sew-d-small-100k-ft-timit
This model is a fine-tuned version of asapp/sew-d-small-100k on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:
- Loss: 1.7430
- Wer: 0.8090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.2068 | 0.69 | 100 | 4.0802 | 1.0 |
2.9806 | 1.38 | 200 | 2.9792 | 1.0 |
2.9781 | 2.07 | 300 | 2.9408 | 1.0 |
2.9656 | 2.76 | 400 | 2.9143 | 1.0 |
2.8953 | 3.45 | 500 | 2.8774 | 1.0 |
2.7714 | 4.14 | 600 | 2.7774 | 0.9999 |
2.6883 | 4.83 | 700 | 2.6552 | 0.9854 |
2.6477 | 5.52 | 800 | 2.5424 | 1.0114 |
2.3607 | 6.21 | 900 | 2.4291 | 1.1012 |
2.1048 | 6.9 | 1000 | 2.2526 | 0.9744 |
2.2448 | 7.59 | 1100 | 2.1697 | 0.9332 |
2.3525 | 8.28 | 1200 | 2.0429 | 0.8721 |
2.099 | 8.97 | 1300 | 2.0076 | 0.9183 |
1.8236 | 9.66 | 1400 | 1.9695 | 0.8263 |
1.6602 | 10.34 | 1500 | 1.9328 | 0.8537 |
2.2146 | 11.03 | 1600 | 1.8795 | 0.8443 |
1.9278 | 11.72 | 1700 | 1.8749 | 0.8075 |
1.6324 | 12.41 | 1800 | 1.8504 | 0.8091 |
1.6517 | 13.1 | 1900 | 1.8228 | 0.8233 |
2.0463 | 13.79 | 2000 | 1.8194 | 0.8564 |
1.8736 | 14.48 | 2100 | 1.7950 | 0.8225 |
1.6233 | 15.17 | 2200 | 1.7896 | 0.8429 |
1.4982 | 15.86 | 2300 | 1.7793 | 0.8441 |
1.8955 | 16.55 | 2400 | 1.7640 | 0.8058 |
1.8253 | 17.24 | 2500 | 1.7668 | 0.8134 |
1.5332 | 17.93 | 2600 | 1.7611 | 0.8015 |
1.452 | 18.62 | 2700 | 1.7497 | 0.8072 |
1.7609 | 19.31 | 2800 | 1.7464 | 0.8062 |
1.7743 | 20.0 | 2900 | 1.7430 | 0.8090 |
Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3