patrickvonplaten's picture
update model card README.md
0437868
|
raw
history blame
3.16 kB
metadata
license: apache-2.0
tags:
  - automatic-speech-recognition
  - timit_asr
  - generated_from_trainer
datasets:
  - timit_asr
model-index:
  - name: sew-d-small-100k-ft-timit
    results: []

sew-d-small-100k-ft-timit

This model is a fine-tuned version of asapp/sew-d-small-100k on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7430
  • Wer: 0.8090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2068 0.69 100 4.0802 1.0
2.9806 1.38 200 2.9792 1.0
2.9781 2.07 300 2.9408 1.0
2.9656 2.76 400 2.9143 1.0
2.8953 3.45 500 2.8774 1.0
2.7714 4.14 600 2.7774 0.9999
2.6883 4.83 700 2.6552 0.9854
2.6477 5.52 800 2.5424 1.0114
2.3607 6.21 900 2.4291 1.1012
2.1048 6.9 1000 2.2526 0.9744
2.2448 7.59 1100 2.1697 0.9332
2.3525 8.28 1200 2.0429 0.8721
2.099 8.97 1300 2.0076 0.9183
1.8236 9.66 1400 1.9695 0.8263
1.6602 10.34 1500 1.9328 0.8537
2.2146 11.03 1600 1.8795 0.8443
1.9278 11.72 1700 1.8749 0.8075
1.6324 12.41 1800 1.8504 0.8091
1.6517 13.1 1900 1.8228 0.8233
2.0463 13.79 2000 1.8194 0.8564
1.8736 14.48 2100 1.7950 0.8225
1.6233 15.17 2200 1.7896 0.8429
1.4982 15.86 2300 1.7793 0.8441
1.8955 16.55 2400 1.7640 0.8058
1.8253 17.24 2500 1.7668 0.8134
1.5332 17.93 2600 1.7611 0.8015
1.452 18.62 2700 1.7497 0.8072
1.7609 19.31 2800 1.7464 0.8062
1.7743 20.0 2900 1.7430 0.8090

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.8.1
  • Datasets 1.14.1.dev0
  • Tokenizers 0.10.3