Hugo-7B-slerp
Hugo-7B-slerp is a successful merge of the following models using mergekit:
𧩠Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 32]
- model: beowolx/CodeNinja-1.0-OpenChat-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π Performance
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
paulilioaica/Hugo-7B-slerp | 67.07 | 64.51 | 84.77 | 62.54 | 57.13 | 80.03 | 53.45 |
mistralai/Mistral-7B-Instruct-v0.2 | 65.71 | 63.14 | 84.88 | 60.78 | 68.26 | 77.19 | 40.03 |
beowolx/CodeNinja-1.0-OpenChat-7B | 67.4 | 63.48 | 83.65 | 63.77 | 47.16 | 79.79 | 66.57 |
With bold one can see the benchmarks where this merge overtakes the basemodel in performance.
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "paulilioaica/Hugo-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"conversational",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs)
π More on megekit
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.07 |
AI2 Reasoning Challenge (25-Shot) | 64.51 |
HellaSwag (10-Shot) | 84.77 |
MMLU (5-Shot) | 62.54 |
TruthfulQA (0-shot) | 57.13 |
Winogrande (5-shot) | 80.03 |
GSM8k (5-shot) | 53.45 |
- Downloads last month
- 79
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for paulilioaica/Hugo-7B-slerp
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard64.510
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.770
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.540
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.130
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.030
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard53.450