|
from typing import Dict, List, Any |
|
from optimum.onnxruntime import ORTModelForQuestionAnswering |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.model = ORTModelForQuestionAnswering.from_pretrained(path, file_name="model_optimized_quantized.onnx") |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
self.pipeline = pipeline("question-answering", model=self.model, tokenizer=self.tokenizer) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The list contains the answer and scores of the inference inputs |
|
""" |
|
inputs = data.get("inputs", data) |
|
|
|
prediction = self.pipeline(**inputs) |
|
|
|
return prediction |
|
|