metadata
license: apache-2.0
base_model: scb10x/typhoon-7b
tags:
- generated_from_trainer
model-index:
- name: out
results: []
See axolotl config
axolotl version: 0.3.0
base_model: scb10x/typhoon-7b
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: finetune-data.jsonl
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: typhoon-7b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 5
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 5
save_total_limit: 10
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
out
This model is a fine-tuned version of scb10x/typhoon-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 23
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4821 | 0.0 | 1 | 4.2554 |
0.7752 | 0.2 | 48 | 0.7134 |
0.7287 | 0.41 | 96 | 0.6403 |
0.6135 | 0.61 | 144 | 0.6305 |
0.7828 | 0.81 | 192 | 0.6020 |
0.3375 | 1.02 | 240 | 0.5951 |
0.471 | 1.22 | 288 | 0.6191 |
0.2798 | 1.42 | 336 | 0.6249 |
0.5071 | 1.63 | 384 | 0.6213 |
0.2792 | 1.83 | 432 | 0.6176 |
0.069 | 2.03 | 480 | 0.6393 |
0.0742 | 2.23 | 528 | 0.6877 |
0.1309 | 2.44 | 576 | 0.6892 |
0.0349 | 2.64 | 624 | 0.6701 |
0.0639 | 2.84 | 672 | 0.6657 |
0.0273 | 3.05 | 720 | 0.6895 |
0.0311 | 3.25 | 768 | 0.7606 |
0.0307 | 3.45 | 816 | 0.7636 |
0.0791 | 3.66 | 864 | 0.7664 |
0.0747 | 3.86 | 912 | 0.7682 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0