SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pjbhaumik/biencoder-finetune-model-v9")
# Run inference
sentences = [
'pets in cargo',
'can a pet travel in cargo',
'baggage exceptions for Amex',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval_examples
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
pearson_manhattan | nan |
spearman_manhattan | nan |
pearson_euclidean | nan |
spearman_euclidean | nan |
pearson_dot | nan |
spearman_dot | nan |
pearson_max | nan |
spearman_max | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,488 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 tokens
- mean: 10.4 tokens
- max: 47 tokens
- min: 4 tokens
- mean: 10.14 tokens
- max: 37 tokens
- 1: 100.00%
- Samples:
sentence_0 sentence_1 label how to use a companion certificate on delta.com
SHOPPING ON DELTA.COM FOR AMEX CERT
1
is jamaica can be booked with companion certificate
what areas can the American Express companion certificate be applied to
1
how do i book award travel on klm
can you book an air france ticket with miles
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 12multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 12max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | eval_examples_spearman_max |
---|---|---|---|
0.1033 | 100 | - | nan |
0.2066 | 200 | - | nan |
0.3099 | 300 | - | nan |
0.4132 | 400 | - | nan |
0.5165 | 500 | 0.7655 | nan |
0.6198 | 600 | - | nan |
0.7231 | 700 | - | nan |
0.8264 | 800 | - | nan |
0.9298 | 900 | - | nan |
1.0 | 968 | - | nan |
1.0331 | 1000 | 0.3727 | nan |
1.1364 | 1100 | - | nan |
1.2397 | 1200 | - | nan |
1.3430 | 1300 | - | nan |
1.4463 | 1400 | - | nan |
1.5496 | 1500 | 0.2686 | nan |
1.6529 | 1600 | - | nan |
1.7562 | 1700 | - | nan |
1.8595 | 1800 | - | nan |
1.9628 | 1900 | - | nan |
2.0 | 1936 | - | nan |
2.0661 | 2000 | 0.2709 | nan |
2.1694 | 2100 | - | nan |
2.2727 | 2200 | - | nan |
2.3760 | 2300 | - | nan |
2.4793 | 2400 | - | nan |
2.5826 | 2500 | 0.231 | nan |
2.6860 | 2600 | - | nan |
2.7893 | 2700 | - | nan |
2.8926 | 2800 | - | nan |
2.9959 | 2900 | - | nan |
3.0 | 2904 | - | nan |
3.0992 | 3000 | 0.2461 | nan |
3.2025 | 3100 | - | nan |
3.3058 | 3200 | - | nan |
3.4091 | 3300 | - | nan |
3.5124 | 3400 | - | nan |
3.6157 | 3500 | 0.2181 | nan |
3.7190 | 3600 | - | nan |
3.8223 | 3700 | - | nan |
3.9256 | 3800 | - | nan |
4.0 | 3872 | - | nan |
4.0289 | 3900 | - | nan |
4.1322 | 4000 | 0.2288 | nan |
4.2355 | 4100 | - | nan |
4.3388 | 4200 | - | nan |
4.4421 | 4300 | - | nan |
4.5455 | 4400 | - | nan |
4.6488 | 4500 | 0.2123 | nan |
4.7521 | 4600 | - | nan |
4.8554 | 4700 | - | nan |
4.9587 | 4800 | - | nan |
5.0 | 4840 | - | nan |
5.0620 | 4900 | - | nan |
5.1653 | 5000 | 0.2254 | nan |
5.2686 | 5100 | - | nan |
5.3719 | 5200 | - | nan |
5.4752 | 5300 | - | nan |
5.5785 | 5400 | - | nan |
5.6818 | 5500 | 0.2077 | nan |
5.7851 | 5600 | - | nan |
5.8884 | 5700 | - | nan |
5.9917 | 5800 | - | nan |
6.0 | 5808 | - | nan |
6.0950 | 5900 | - | nan |
6.1983 | 6000 | 0.218 | nan |
6.3017 | 6100 | - | nan |
6.4050 | 6200 | - | nan |
6.5083 | 6300 | - | nan |
6.6116 | 6400 | - | nan |
6.7149 | 6500 | 0.206 | nan |
6.8182 | 6600 | - | nan |
6.9215 | 6700 | - | nan |
7.0 | 6776 | - | nan |
7.0248 | 6800 | - | nan |
7.1281 | 6900 | - | nan |
7.2314 | 7000 | 0.2126 | nan |
7.3347 | 7100 | - | nan |
7.4380 | 7200 | - | nan |
7.5413 | 7300 | - | nan |
7.6446 | 7400 | - | nan |
7.7479 | 7500 | 0.2065 | nan |
7.8512 | 7600 | - | nan |
7.9545 | 7700 | - | nan |
8.0 | 7744 | - | nan |
8.0579 | 7800 | - | nan |
8.1612 | 7900 | - | nan |
8.2645 | 8000 | 0.2068 | nan |
8.3678 | 8100 | - | nan |
8.4711 | 8200 | - | nan |
8.5744 | 8300 | - | nan |
8.6777 | 8400 | - | nan |
8.7810 | 8500 | 0.2014 | nan |
8.8843 | 8600 | - | nan |
8.9876 | 8700 | - | nan |
9.0 | 8712 | - | nan |
9.0909 | 8800 | - | nan |
9.1942 | 8900 | - | nan |
9.2975 | 9000 | 0.2057 | nan |
9.4008 | 9100 | - | nan |
9.5041 | 9200 | - | nan |
9.6074 | 9300 | - | nan |
9.7107 | 9400 | - | nan |
9.8140 | 9500 | 0.1969 | nan |
9.9174 | 9600 | - | nan |
10.0 | 9680 | - | nan |
10.0207 | 9700 | - | nan |
10.1240 | 9800 | - | nan |
10.2273 | 9900 | - | nan |
10.3306 | 10000 | 0.2023 | nan |
10.4339 | 10100 | - | nan |
10.5372 | 10200 | - | nan |
10.6405 | 10300 | - | nan |
10.7438 | 10400 | - | nan |
10.8471 | 10500 | 0.1946 | nan |
10.9504 | 10600 | - | nan |
11.0 | 10648 | - | nan |
11.0537 | 10700 | - | nan |
11.1570 | 10800 | - | nan |
11.2603 | 10900 | - | nan |
11.3636 | 11000 | 0.1982 | nan |
11.4669 | 11100 | - | nan |
11.5702 | 11200 | - | nan |
11.6736 | 11300 | - | nan |
11.7769 | 11400 | - | nan |
11.8802 | 11500 | 0.1919 | nan |
11.9835 | 11600 | - | nan |
12.0 | 11616 | - | nan |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.0
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pjbhaumik/biencoder-finetune-model-v9
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Pearson Cosine on eval examplesself-reportedNaN
- Spearman Cosine on eval examplesself-reportedNaN
- Pearson Manhattan on eval examplesself-reportedNaN
- Spearman Manhattan on eval examplesself-reportedNaN
- Pearson Euclidean on eval examplesself-reportedNaN
- Spearman Euclidean on eval examplesself-reportedNaN
- Pearson Dot on eval examplesself-reportedNaN
- Spearman Dot on eval examplesself-reportedNaN
- Pearson Max on eval examplesself-reportedNaN
- Spearman Max on eval examplesself-reportedNaN