word-classification / README.md
porxelek's picture
Add SetFit model
739952f verified
---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Enable audio recorder app
- text: Open video camera mode
- text: Show recent chats
- text: Switch to instant camera usage mode
- text: Could you switch to video camera mode?
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-----------|:----------------------------------------------------------------------------------------------------------------------------------|
| microphone | <ul><li>'Launch microphone app'</li><li>'Launch recording app'</li><li>'Access mic app'</li></ul> |
| history | <ul><li>'View chat logs'</li><li>'Display conversation details'</li><li>'Show history'</li></ul> |
| camera | <ul><li>'Switch to webcam mode please'</li><li>'Could you switch to video camera mode?'</li><li>'Open the photo webcam'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("porxelek/word-classification")
# Run inference
preds = model("Show recent chats")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 4.1364 | 10 |
| Label | Training Sample Count |
|:-----------|:----------------------|
| camera | 250 |
| history | 150 |
| microphone | 150 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.1209 | - |
| 0.0164 | 50 | 0.1449 | - |
| 0.0328 | 100 | 0.046 | - |
| 0.0492 | 150 | 0.0099 | - |
| 0.0656 | 200 | 0.0049 | - |
| 0.0820 | 250 | 0.0036 | - |
| 0.0985 | 300 | 0.0022 | - |
| 0.1149 | 350 | 0.0015 | - |
| 0.1313 | 400 | 0.0011 | - |
| 0.1477 | 450 | 0.001 | - |
| 0.1641 | 500 | 0.0009 | - |
| 0.1805 | 550 | 0.0009 | - |
| 0.1969 | 600 | 0.0009 | - |
| 0.2133 | 650 | 0.0008 | - |
| 0.2297 | 700 | 0.0007 | - |
| 0.2461 | 750 | 0.0006 | - |
| 0.2626 | 800 | 0.0006 | - |
| 0.2790 | 850 | 0.0006 | - |
| 0.2954 | 900 | 0.0006 | - |
| 0.3118 | 950 | 0.0005 | - |
| 0.3282 | 1000 | 0.0004 | - |
| 0.3446 | 1050 | 0.0005 | - |
| 0.3610 | 1100 | 0.0005 | - |
| 0.3774 | 1150 | 0.0004 | - |
| 0.3938 | 1200 | 0.0004 | - |
| 0.4102 | 1250 | 0.0004 | - |
| 0.4266 | 1300 | 0.0005 | - |
| 0.4431 | 1350 | 0.0004 | - |
| 0.4595 | 1400 | 0.0003 | - |
| 0.4759 | 1450 | 0.0003 | - |
| 0.4923 | 1500 | 0.0003 | - |
| 0.5087 | 1550 | 0.0003 | - |
| 0.5251 | 1600 | 0.0003 | - |
| 0.5415 | 1650 | 0.0003 | - |
| 0.5579 | 1700 | 0.0003 | - |
| 0.5743 | 1750 | 0.0003 | - |
| 0.5907 | 1800 | 0.0003 | - |
| 0.6072 | 1850 | 0.0002 | - |
| 0.6236 | 1900 | 0.0003 | - |
| 0.6400 | 1950 | 0.0002 | - |
| 0.6564 | 2000 | 0.0002 | - |
| 0.6728 | 2050 | 0.0002 | - |
| 0.6892 | 2100 | 0.0003 | - |
| 0.7056 | 2150 | 0.0002 | - |
| 0.7220 | 2200 | 0.0002 | - |
| 0.7384 | 2250 | 0.0002 | - |
| 0.7548 | 2300 | 0.0002 | - |
| 0.7713 | 2350 | 0.0002 | - |
| 0.7877 | 2400 | 0.0002 | - |
| 0.8041 | 2450 | 0.0002 | - |
| 0.8205 | 2500 | 0.0002 | - |
| 0.8369 | 2550 | 0.0002 | - |
| 0.8533 | 2600 | 0.0002 | - |
| 0.8697 | 2650 | 0.0002 | - |
| 0.8861 | 2700 | 0.0002 | - |
| 0.9025 | 2750 | 0.0002 | - |
| 0.9189 | 2800 | 0.0002 | - |
| 0.9353 | 2850 | 0.0002 | - |
| 0.9518 | 2900 | 0.0002 | - |
| 0.9682 | 2950 | 0.0002 | - |
| 0.9846 | 3000 | 0.0002 | - |
| **1.0** | **3047** | **-** | **0.0** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->