|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- PandaReach-v1 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: TQC |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: PandaReach-v1 |
|
type: PandaReach-v1 |
|
metrics: |
|
- type: mean_reward |
|
value: -2.00 +/- 0.77 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **TQC** Agent playing **PandaReach-v1** |
|
This is a trained model of a **TQC** agent playing **PandaReach-v1** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
Install the RL Zoo (with SB3 and SB3-Contrib): |
|
```bash |
|
pip install rl_zoo3 |
|
``` |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v1 -orga qgallouedec -f logs/ |
|
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v1 -f logs/ |
|
``` |
|
|
|
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: |
|
``` |
|
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v1 -orga qgallouedec -f logs/ |
|
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v1 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python -m rl_zoo3.train --algo tqc --env PandaReach-v1 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m rl_zoo3.push_to_hub --algo tqc --env PandaReach-v1 -f logs/ -orga qgallouedec |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 256), |
|
('buffer_size', 1000000), |
|
('ent_coef', 'auto'), |
|
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), |
|
('gamma', 0.95), |
|
('gradient_steps', -1), |
|
('learning_rate', 0.001), |
|
('learning_starts', 1000), |
|
('n_envs', 8), |
|
('n_timesteps', 20000.0), |
|
('normalize', True), |
|
('policy', 'MultiInputPolicy'), |
|
('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'), |
|
('replay_buffer_class', 'HerReplayBuffer'), |
|
('replay_buffer_kwargs', |
|
"dict( online_sampling=True, goal_selection_strategy='future', " |
|
'n_sampled_goal=4 )'), |
|
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) |
|
``` |
|
|
|
# Environment Arguments |
|
```python |
|
{'render': True} |
|
``` |
|
|