metadata
widget:
- text: አዲስ አበባ
example_title: Example 1
- text: በኢንግሊዝ ፕሪምየር ሊግ
example_title: Example 2
- text: ዶናልድ ትራምፕ
example_title: Example 3
language:
- am
metrics:
- perplexity
library_name: transformers
pipeline_tag: text-generation
gpt2-small-amharic
This is a smaller version of the gpt2 decoder transformer model pretrained from scratch for 2 days on 290 million tokens of Amharic text.
- It has 33.7 Million parameters
- The context size of this model is 128 tokens.
- It has the same tokenizer as gpt2, trained from scratch using the same Amharic dataset as the model with a vocabulary size of 16384.
- This is a base model and hasn't undergone any supervised finetuing yet.
It achieves the following results on the evaluation set:
Loss: 3.96
Perplexity: 52.55
How to use
You can use this model directly with a pipeline for text generation:
from transformers import pipeline
gpt2_am = pipeline(
"text-generation",
model="rasyosef/gpt2-small-amharic"
)
prompt = "በ ኢንግሊዝ ፕሪምየር ሊግ"
gpt2_am(
prompt,
max_new_tokens=64,
temperature=0.8,
do_sample=True,
top_k=8,
top_p=0.8,
repetition_penalty=1.25
)
Output:
[{'generated_text': 'በ ኢንግሊዝ ፕሪምየር ሊግ የዋንጫ ባለቤት የሆነው ማንቸስተር ሲቲ በ9 ነጥብ ተበልጦ አራተኛ ደረጃ ላይ ይገኛል ።\nከትናንት በስቲያ ምሽት በእንግሊዝ ፕሬሚየር ሊግ አርሰናልን 3 ለ1 በማሸነፍ ነጥቡን ወደ 7 ከፍ በማድረግ በደረጃ ሠንጠረዡ ግርጌ ላይ የሚገኘው ሊቨርፑል ትናንት ማታ ከበርንሌይ ጋር አንድ እኩል ተለያይቷል'}]
Hallucination
Due to the model's small size, hallucinations occur often in the generated text. Here's an example
[{'generated_text': 'በ ኢንግሊዝ ፕሪምየር ሊግ የ5ኛ ሳምንት መርሃግብር ዛሬ ምሽት 4 :00 ሰአት ላይ በዋልያዎቹ 2-0 አሸናፊነት ተጠናቋል፡፡\nከጨዋታው መጠናቀቅ በኋላ የኢትዮጵያ እግር ኳስ ፌደሬሽን ስራ አስፈፃሚ ኮሚቴ ሰብሳቢ አቶ ኢሳያስ ጂራ እና ምክትል ፕሬዝዳንቱ አቶ ሰለሞን ገ/እግዚያብሔር ለሶከር ኢትዮጵያ እንደገለፁት የሁለቱ ቡድኖች ጨዋታ ነገ ጠዋት 3:30'}]
Demo
You can use the following demo to generate text using gpt2-small-amharic. Please enter a prompt and click the Generate button to generate completions for the prompt.