metadata
library_name: transformers
model-index:
- name: internlm-chatbode-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 63.05
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 51.46
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 42.32
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.33
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 80.69
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 79.8
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 87.99
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.09
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 61.11
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/internlm-chatbode-7b
name: Open Portuguese LLM Leaderboard
language:
- pt
pipeline_tag: text-generation
internlm-chatbode-7b
O InternLm-ChatBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo InternLM2. Este modelo foi refinado através do processo de fine-tuning utilizando o dataset UltraAlpaca.
Características Principais
- Modelo Base: internlm/internlm2-chat-7b
- Dataset para Fine-tuning: UltraAlpaca
- Treinamento: O treinamento foi realizado a partir do fine-tuning, usando QLoRA, do internlm2-chat-7b.
Exemplo de uso
A seguir um exemplo de código de como carregar e utilizar o modelo:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("recogna-nlp/internlm-chatbode-7b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("recogna-nlp/internlm-chatbode-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
response, history = model.chat(tokenizer, "Olá", history=[])
print(response)
response, history = model.chat(tokenizer, "O que é o Teorema de Pitágoras? Me dê um exemplo", history=history)
print(response)
As respostas podem ser geradas via stream utilizando o método stream_chat
:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "recogna-nlp/internlm-chatbode-7b"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "Olá", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 69.54 |
ENEM Challenge (No Images) | 63.05 |
BLUEX (No Images) | 51.46 |
OAB Exams | 42.32 |
Assin2 RTE | 91.33 |
Assin2 STS | 80.69 |
FaQuAD NLI | 79.80 |
HateBR Binary | 87.99 |
PT Hate Speech Binary | 68.09 |
tweetSentBR | 61.11 |
Citação
Se você deseja utilizar o Chatbode em sua pesquisa, cite-o da seguinte maneira:
@misc {chatbode_2024,
author = { Gabriel Lino Garcia, Pedro Henrique Paiola and and João Paulo Papa},
title = { Chatbode },
year = {2024},
url = { https://huggingface.co/recogna-nlp/internlm-chatbode-7b/ },
doi = { 10.57967/hf/3317 },
publisher = { Hugging Face }
}