Edit model card

arabert_cross_organization_task1_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1732
  • Qwk: 0.1337
  • Mse: 1.1732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 4.6922 -0.0262 4.6922
No log 0.2353 4 1.9697 -0.0193 1.9697
No log 0.3529 6 1.2474 -0.0024 1.2474
No log 0.4706 8 1.3039 -0.1115 1.3039
No log 0.5882 10 1.2027 -0.0222 1.2027
No log 0.7059 12 1.1028 0.0290 1.1028
No log 0.8235 14 1.1603 0.0257 1.1603
No log 0.9412 16 1.1285 -0.0227 1.1285
No log 1.0588 18 1.1018 0.0835 1.1018
No log 1.1765 20 1.1034 -0.0341 1.1034
No log 1.2941 22 1.0966 0.0201 1.0966
No log 1.4118 24 1.0911 0.0407 1.0911
No log 1.5294 26 1.0941 0.0854 1.0941
No log 1.6471 28 1.1027 0.0379 1.1027
No log 1.7647 30 1.1067 0.0462 1.1067
No log 1.8824 32 1.1142 -0.0019 1.1142
No log 2.0 34 1.1210 0.0205 1.1210
No log 2.1176 36 1.1209 0.0124 1.1209
No log 2.2353 38 1.1138 0.0345 1.1138
No log 2.3529 40 1.1537 0.0350 1.1537
No log 2.4706 42 1.1387 0.0164 1.1387
No log 2.5882 44 1.1467 0.0448 1.1467
No log 2.7059 46 1.1779 0.0372 1.1779
No log 2.8235 48 1.1734 0.0435 1.1734
No log 2.9412 50 1.0971 0.0562 1.0971
No log 3.0588 52 1.0868 0.0993 1.0868
No log 3.1765 54 1.1937 0.0208 1.1937
No log 3.2941 56 1.1870 -0.0026 1.1870
No log 3.4118 58 1.1154 0.0605 1.1154
No log 3.5294 60 1.1425 0.0586 1.1425
No log 3.6471 62 1.1710 0.0755 1.1710
No log 3.7647 64 1.2418 -0.0251 1.2418
No log 3.8824 66 1.2678 -0.0157 1.2678
No log 4.0 68 1.3259 -0.0370 1.3259
No log 4.1176 70 1.4421 -0.0243 1.4421
No log 4.2353 72 1.3217 -0.0265 1.3217
No log 4.3529 74 1.1731 0.1242 1.1731
No log 4.4706 76 1.1656 0.1082 1.1656
No log 4.5882 78 1.2346 -0.0387 1.2346
No log 4.7059 80 1.3196 0.0306 1.3196
No log 4.8235 82 1.2508 -0.0093 1.2508
No log 4.9412 84 1.1905 -0.0118 1.1905
No log 5.0588 86 1.1863 0.0002 1.1863
No log 5.1765 88 1.2464 0.0063 1.2464
No log 5.2941 90 1.2248 0.0177 1.2248
No log 5.4118 92 1.2140 0.0391 1.2140
No log 5.5294 94 1.2402 0.0177 1.2402
No log 5.6471 96 1.1852 0.1192 1.1852
No log 5.7647 98 1.1973 0.0602 1.1973
No log 5.8824 100 1.2330 0.0886 1.2330
No log 6.0 102 1.1570 0.0504 1.1570
No log 6.1176 104 1.1259 0.1211 1.1259
No log 6.2353 106 1.1231 0.1211 1.1231
No log 6.3529 108 1.1216 0.0835 1.1216
No log 6.4706 110 1.1530 0.0907 1.1530
No log 6.5882 112 1.1410 0.1176 1.1410
No log 6.7059 114 1.1564 0.1120 1.1564
No log 6.8235 116 1.2102 0.0988 1.2102
No log 6.9412 118 1.2596 0.0681 1.2596
No log 7.0588 120 1.2375 0.0722 1.2375
No log 7.1765 122 1.1821 0.1425 1.1821
No log 7.2941 124 1.1856 0.1180 1.1856
No log 7.4118 126 1.1952 0.1542 1.1952
No log 7.5294 128 1.2010 0.1643 1.2010
No log 7.6471 130 1.1966 0.1542 1.1966
No log 7.7647 132 1.2024 0.1589 1.2024
No log 7.8824 134 1.2473 0.0820 1.2473
No log 8.0 136 1.2492 0.0847 1.2492
No log 8.1176 138 1.2147 0.1538 1.2147
No log 8.2353 140 1.1859 0.0946 1.1859
No log 8.3529 142 1.1767 0.1220 1.1767
No log 8.4706 144 1.1738 0.1091 1.1738
No log 8.5882 146 1.1774 0.1326 1.1774
No log 8.7059 148 1.1779 0.1337 1.1779
No log 8.8235 150 1.1724 0.1326 1.1724
No log 8.9412 152 1.1684 0.1303 1.1684
No log 9.0588 154 1.1673 0.1468 1.1673
No log 9.1765 156 1.1674 0.1468 1.1674
No log 9.2941 158 1.1677 0.1326 1.1677
No log 9.4118 160 1.1752 0.1369 1.1752
No log 9.5294 162 1.1826 0.1538 1.1826
No log 9.6471 164 1.1796 0.1229 1.1796
No log 9.7647 166 1.1767 0.1369 1.1767
No log 9.8824 168 1.1735 0.1337 1.1735
No log 10.0 170 1.1732 0.1337 1.1732

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_organization_task1_fold2

Finetuned
(530)
this model