metadata
base_model: meta-llama/Meta-Llama-3.1-8B
library_name: peft
license: llama3.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama_wat_2024_hindi
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: sam2ai/hindi_translation_wat2024
type: alpaca
dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/wat2024-qlora-out
hub_model_id: sam2ai/llama_wat_2024_hindi
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: wat2024_hindi_translation
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
llama_wat_2024_hindi
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Framework versions
- PEFT 0.11.1
- Transformers 4.44.0.dev0
- Pytorch 2.1.2+git70dfd51
- Datasets 2.19.1
- Tokenizers 0.19.1