Edit model card

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
relevant
  • 'Caixa y BBVA son los prestamistas que se benefician de la garantía en caso de impago en la financiación de inversiones, algo común también en las sociedades que avalan a comunidades autónomas.'
  • 'El IBEX supera los 11.200 puntos gracias al impulso de la banca, liderado por Banco Sabadell con una subida del 2,05%.'
  • 'Nuevo caso de phishing relacionado con ING, registrado el 16 de julio de 2024, con la URL /www.ingseguridad-app.com/es/login.'
discard
  • 'El BBVA también tiene un mal servicio, ya que no aceptan billetes de 2.000 ni de 1.000 de San Martín, obligando a hacer largas filas tanto para cambiar como para depositar.'
  • 'Merhaba, yaşadığınız deneyim için üzgünüz; Garanti BBVA ATM konum bilgilerini paylaşırsanız gerekli kontrolleri hızlıca yapacağız.'
  • 'En la gasolinera sobre Constituyentes, mi tarjeta de crédito fue denegada y no me hicieron cargo en la aplicación.'

Evaluation

Metrics

Label Accuracy
all 0.7594

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-100")
# Run inference
preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 22.0 41
Label Training Sample Count
discard 100
relevant 100

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0008 1 0.3931 -
0.0396 50 0.2501 -
0.0792 100 0.2471 -
0.1188 150 0.1991 -
0.1584 200 0.0902 -
0.1979 250 0.0218 -
0.2375 300 0.0055 -
0.2771 350 0.0026 -
0.3167 400 0.0013 -
0.3563 450 0.0005 -
0.3959 500 0.0005 -
0.4355 550 0.001 -
0.4751 600 0.0003 -
0.5146 650 0.0003 -
0.5542 700 0.0001 -
0.5938 750 0.0003 -
0.6334 800 0.0003 -
0.6730 850 0.0004 -
0.7126 900 0.0002 -
0.7522 950 0.0001 -
0.7918 1000 0.0001 -
0.8314 1050 0.0001 -
0.8709 1100 0.0002 -
0.9105 1150 0.0002 -
0.9501 1200 0.0002 -
0.9897 1250 0.0 -

Framework Versions

  • Python: 3.11.0rc1
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.39.0
  • PyTorch: 2.3.1+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saraestevez/setfit-minilm-bank-tweets-processed-100

Evaluation results