khmer-pos-roberta / README.md
seanghay's picture
Update README.md
a1ea1a1
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - seanghay/khPOS
metrics:
  - precision
  - recall
  - f1
  - accuracy
widget:
  - text: គាត់ផឹកទឹកនៅភ្នំពេញ
  - text: តើលោកស្រីបានសាកសួរទៅគាត់ទេ?
  - text: នេត្រា មិនដឹងសោះថាអ្នកជាមនុស្ស!
  - text: >-
      លោក វណ្ណ ម៉ូលីវណ្ណ
      ជាបិតាស្ថាបត្យកម្មដ៏ល្បីល្បាញរបស់ប្រទេសកម្ពុជានៅក្នុងសម័យសង្គមរាស្ត្រនិយម។
model-index:
  - name: khmer-pos-roberta-10
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: kh_pos
          type: kh_pos
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9511876225757245
          - name: Recall
            type: recall
            value: 0.9526407682234832
          - name: F1
            type: f1
            value: 0.9519136408243376
          - name: Accuracy
            type: accuracy
            value: 0.9735370853522176
language:
  - km
library_name: transformers
pipeline_tag: token-classification

Khmer Part of Speech Tagging with XLM RoBERTa

This model is a fine-tuned version of xlm-roberta-base on the khPOS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1063
  • Precision: 0.9512
  • Recall: 0.9526
  • F1: 0.9519
  • Accuracy: 0.9735

Model description

The original paper achieved 98.15% accuracy while this model achieved only 97.35% which is close. However, this is a multilingual model so it has more tokens than the original paper.

Intended uses & limitations

This model can be used to extract useful information from Khmer text.

Training and evaluation data

train: 90% / test: 10%

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 450 0.1347 0.9314 0.9333 0.9324 0.9603
0.4834 2.0 900 0.1183 0.9407 0.9377 0.9392 0.9653
0.1323 3.0 1350 0.1026 0.9484 0.9482 0.9483 0.9699
0.095 4.0 1800 0.0986 0.9502 0.9490 0.9496 0.9712
0.0774 5.0 2250 0.0978 0.9494 0.9491 0.9493 0.9712
0.0616 6.0 2700 0.0991 0.9493 0.9507 0.9500 0.9715
0.0494 7.0 3150 0.0989 0.9529 0.9540 0.9534 0.9731
0.0414 8.0 3600 0.1037 0.9499 0.9501 0.9500 0.9722
0.0339 9.0 4050 0.1056 0.9516 0.9517 0.9516 0.9734
0.029 10.0 4500 0.1063 0.9512 0.9526 0.9519 0.9735

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3