talktoaiQ - SkynetZero LLM TESTED GGUF WORKING
talktoaiQ aka SkynetZero is a quantum-interdimensional-math-powered language model trained with custom reflection datasets and custom TalkToAI datasets. The model went through several iterations, including re-writing of datasets and validation phases, due to errors encountered during testing and conversion into a fully functional LLM. This iterative process ensures SkynetZero can handle complex, multi-dimensional reasoning tasks with an emphasis on ethical decision-making.
If you face any issues put an agent in front of the LLM to stop it showing it's reasoning.
Key Highlights of talktoaiQ:
- Advanced Quantum Reasoning: Integration of quantum-inspired math systems enables talktoaiQ to tackle complex ethical dilemmas and multi-dimensional problem-solving tasks.
- Custom Re-Written Datasets: The training involved multiple rounds of AI-assisted dataset curation, where reflection datasets were re-written for clarity, accuracy, and consistency. Additionally, TalkToAI datasets were integrated and re-processed to align with talktoaiQ’s quantum reasoning framework.
- Iterative Improvement: During testing and model conversion, the datasets were re-written and validated several times to address errors. Each iteration enhanced the model’s ethical consistency and problem-solving accuracy.
- Fine-Tuned on LLaMA 3.1 8B: The model was fine-tuned on the LLaMA 3.1 8B architecture, integrating multiple specialized datasets to ensure high-quality text generation capabilities.
Model Overview
- Developed by: Shafaet Brady Hussain - researchforum.online
- Funded by: Researchforum.online
- Shared by: TalkToAI - https://talktoai.org
- Language(s): English
- Model type: Causal Language Model
- Fine-tuned from: LLaMA 3.1 8B (Meta)
- License: Apache-2.0
**Use with any webui lm studio etc and the best for discord bots and self hosted on on your laptop using CPU only https://github.com/oobabooga/text-generation-webui
Tested on CPU - optimised to work on laptops and PC's at home and oogaboogawebtextgen desktop servers and ad_discordbot extension.
AGENT DATA FROM THE AGENT FILE IN THE FILES SECTION
Usage:
You can use the following code snippet to load and interact with talktoaiQ:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype="auto" ).eval()
Prompt content: "hi"
messages = [ {"role": "user", "content": "hi"} ]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") output_ids = model.generate(input_ids.to("cuda")) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
Model response: "Hello! How can I assist you today?"
print(response)
Training Methodology talktoaiQ was fine-tuned on the LLaMA 3.1 8B architecture using custom datasets. The datasets underwent AI-assisted re-writing to enhance clarity and consistency. Throughout the training process, emphasis was placed on multi-variable quantum reasoning and ensuring alignment with ethical decision-making principles. After identifying errors during testing and conversion, datasets were further improved across multiple epochs.
- Training Regime: Mixed Precision (fp16)
- Training Duration: 8 hours on a high-performance GPU server
Further Research and Contributions talktoaiQ is part of an ongoing effort to explore AI-human co-creation in the development of quantum-enhanced AI models. Collaboration with OpenAI’s Agent Zero played a significant role in curating, editing, and validating datasets, pushing the boundaries of what large language models can achieve.
- Contributions: https://researchforum.online
- Contact: @talktoai on x.com
Ref Huggingface autotrain:
- Hardware Used: A10G High-End GPU
- Hours Used: 8 hours
- Compute Region: On-premise
- Downloads last month
- 80
Model tree for shafire/talktoaiQ
Base model
meta-llama/Llama-3.1-8B