shibing624's picture
Update README.md
5230da3
|
raw
history blame
3.36 kB
---
language:
- zh
tags:
- chatglm
- pytorch
- zh
- Text2Text-Generation
license: "apache-2.0"
widget:
- text: "对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:"
---
# Chinese Spelling Correction LoRA Model
ChatGLM中文纠错LoRA模型
`chatglm-6b-csc-zh-lora` evaluate test data:
The overall performance of chatglm-6b-csc-zh-lora on CSC **test**:
|prefix|input_text|target_text|pred|
|:-- |:--- |:--- |:-- |
|对下面中文拼写纠错:|少先队员因该为老人让坐。|少先队员应该为老人让座。|少先队员应该为老人让座。\n错误字:因,坐|
在CSC测试集上生成结果纠错准确率高,由于是基于大模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。
## Usage
本项目开源在lmft项目:[lmft](https://github.com/shibing624/lmft),可支持ChatGLM模型,通过如下命令调用:
Install package:
```shell
pip install -U lmft
```
```python
from lmft import ChatGlmModel
model = ChatGlmModel("chatglm", "THUDM/chatglm-6b", lora_name="shibing624/chatglm-6b-csc-zh-lora")
r = model.predict(["对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:"])
print(r) # ['少先队员应该为老人让座。\n错误字:因,坐']
```
## Usage (HuggingFace Transformers)
Without [lmft](https://github.com/shibing624/lmft), you can use the model like this:
First, you pass your input through the transformer model, then you get the generated sentence.
Install package:
```
pip install transformers
```
```python
import sys
from peft import PeftModel
from transformers import AutoModel, AutoTokenizer
sys.path.append('..')
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, device_map='auto')
model = PeftModel.from_pretrained(model, "shibing624/chatglm-6b-csc-zh-lora")
model = model.half().cuda() # fp16
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
sents = ['对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:',
'对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。\n答:']
for s in sents:
response = model.chat(tokenizer, s, max_length=128, eos_token_id=tokenizer.eos_token_id)
print(response)
```
output:
```shell
('少先队员应该为老人让座。\n错误字:因,坐', [('对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:', '少先队员应该为老人让座。\n错误字:因,坐')])
('下个星期,我跟我朋友打算去法国玩儿。\n错误字:唷', [('对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。\n答:', '下个星期,我跟我朋友打算去法国玩儿。\n错误字:唷')])
```
模型文件组成:
```
chatglm-6b-csc-zh-lora
├── adapter_config.json
└── adapter_model.bin
```
### 训练数据集
#### 中文纠错数据集
- 数据:[shibing624/CSC](https://huggingface.co/datasets/shibing624/CSC)
如果需要训练ChatGLM模型,请参考[https://github.com/shibing624/lmft](https://github.com/shibing624/lmft)
## Citation
```latex
@software{lmft,
author = {Xu Ming},
title = {lmft: Implementation of language model finetune},
year = {2023},
url = {https://github.com/shibing624/lmft},
}
```