Edit model card

class AdvancedSummarizer: def init(self, model_name="facebook/bart-large-cnn"): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = BartForConditionalGeneration.from_pretrained(model_name).to(self.device) self.tokenizer = BartTokenizer.from_pretrained(model_name)

def summarize(self, text, max_length=150, min_length=50, length_penalty=2.0, num_beams=4):
    inputs = self.tokenizer([text], max_length=1024, return_tensors="pt", truncation=True)
    inputs = inputs.to(self.device)

    summary_ids = self.model.generate(
        inputs["input_ids"],
        num_beams=num_beams,
        max_length=max_length,
        min_length=min_length,
        length_penalty=length_penalty
    )

    summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return summary

def main_summarizer(): # Example usage summarizer = AdvancedSummarizer() text = """...""" # Your text here summary = summarizer.summarize(text) print("Summary:") print(summary)

class AdvancedTextGenerator: def init(self, model_name="gpt2-medium"): try: self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") self.model = GPT2LMHeadModel.from_pretrained(model_name).to(self.device) self.tokenizer = GPT2Tokenizer.from_pretrained(model_name) except Exception as e: print(f"Error initializing the model: {e}") sys.exit(1)

def generate_text(self, prompt, max_length=100, num_return_sequences=1, 
                  temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.0):
    try:
        input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)

        output_sequences = self.model.generate(
            input_ids=input_ids,
            max_length=max_length + len(input_ids[0]),
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            do_sample=True,
            num_return_sequences=num_return_sequences,
        )

        generated_sequences = []
        for generated_sequence in output_sequences:
            text = self.tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
            total_sequence = text[len(self.tokenizer.decode(input_ids[0], clean_up_tokenization_spaces=True)):]
            generated_sequences.append(total_sequence)

        return generated_sequences
    except Exception as e:
        return [f"Error during text generation: {e}"]

def main_generator(): parser = argparse.ArgumentParser(description="Advanced Text Generator") parser.add_argument("--prompt", type=str, help="Starting prompt for text generation") parser.add_argument("--max_length", type=int, default=100, help="Maximum length of generated text") parser.add_argument("--num_sequences", type=int, default=1, help="Number of sequences to generate") parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for sampling") parser.add_argument("--top_k", type=int, default=50, help="Top-k sampling parameter") parser.add_argument("--top_p", type=float, default=0.95, help="Top-p sampling parameter") parser.add_argument("--repetition_penalty", type=float, default=1.0, help="Repetition penalty")

args = parser.parse_args()

generator = AdvancedTextGenerator()

if args.prompt:
    prompt = args.prompt
else:
    print("Please enter the prompt for text generation:")
    prompt = input().strip()

generated_texts = generator.generate_text(
    prompt, 
    max_length=args.max_length,
    num_return_sequences=args.num_sequences,
    temperature=args.temperature,
    top_k=args.top_k,
    top_p=args.top_p,
    repetition_penalty=args.repetition_penalty
)

print("\nGenerated Text(s):")
for i, text in enumerate(generated_texts, 1):
    print(f"\n--- Sequence {i} ---")
    print(text)

if name == "main": main_summarizer() # Call the summarizer main function main_generator() # Call the text generator main function

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Datasets used to train shing12345/AssistGPT