Edit model card

bert-base-greek-uncased-v1-finetuned-polylex

This model is a fine-tuned version of nlpaueb/bert-base-greek-uncased-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
4.1637 1.0 12 2.6649
3.0581 2.0 24 2.5475
2.648 3.0 36 2.1624
2.5983 4.0 48 2.3285
2.7524 5.0 60 2.5745
2.4923 6.0 72 2.8096
2.5336 7.0 84 2.9470
2.3271 8.0 96 2.5497
2.4018 9.0 108 2.3413
2.544 10.0 120 2.4170
1.9144 11.0 132 2.5254
2.0996 12.0 144 2.4147
1.8733 13.0 156 2.5462
1.8261 14.0 168 2.2045
2.0033 15.0 180 1.9549
1.9967 16.0 192 2.1614
1.8515 17.0 204 2.8167
1.8583 18.0 216 2.8441
1.7512 19.0 228 2.4536
1.5746 20.0 240 2.6204
1.5267 21.0 252 2.9290
1.7248 22.0 264 2.0433
1.5692 23.0 276 2.4710
1.6093 24.0 288 2.4340
1.619 25.0 300 2.2689
1.4406 26.0 312 3.6729
1.5452 27.0 324 3.2225
1.4575 28.0 336 1.8853
1.5534 29.0 348 2.2135
1.4872 30.0 360 2.7540
1.3923 31.0 372 2.2408
1.3682 32.0 384 2.5181
1.2623 33.0 396 2.1360
1.1888 34.0 408 2.3912
1.3427 35.0 420 2.4600
1.1969 36.0 432 2.6388
1.3367 37.0 444 2.5489
1.226 38.0 456 1.5805
1.1808 39.0 468 2.7466
1.1694 40.0 480 2.4887
1.2736 41.0 492 2.5735
1.2292 42.0 504 2.2357
1.2556 43.0 516 2.9244
1.0155 44.0 528 1.8348
1.2425 45.0 540 2.4494
1.2665 46.0 552 2.4866
1.3439 47.0 564 2.3430
1.4468 48.0 576 1.7801
1.1772 49.0 588 2.5785
1.0618 50.0 600 2.9959

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.