Spaces:
Running
Running
import os | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import numpy as np | |
from models.networks import define_G | |
import glob | |
class Model(): | |
def __init__(self, device="cpu"): | |
self.device = torch.device(device) | |
self.G_A_net = None | |
self.alias_net = None | |
self.ref_t = None | |
def load(self): | |
with torch.no_grad(): | |
self.G_A_net = define_G(3, 3, 64, "c2pGen", "instance", False, "normal", 0.02, [0]) | |
self.alias_net = define_G(3, 3, 64, "antialias", "instance", False, "normal", 0.02, [0]) | |
G_A_state = torch.load("160_net_G_A.pth" if not os.environ['NET_MODEL'] else os.environ['NET_MODEL'], map_location=str(self.device)) | |
for p in list(G_A_state.keys()): | |
G_A_state["module."+str(p)] = G_A_state.pop(p) | |
self.G_A_net.load_state_dict(G_A_state) | |
alias_state = torch.load("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL'], map_location=str(self.device)) | |
for p in list(alias_state.keys()): | |
alias_state["module."+str(p)] = alias_state.pop(p) | |
self.alias_net.load_state_dict(alias_state) | |
ref_img = Image.open("reference.png").convert('L') | |
self.ref_t = process(greyscale(ref_img)).to(self.device) | |
def pixelize(self, in_img, out_img): | |
with torch.no_grad(): | |
in_img = Image.open(in_img).convert('RGB') | |
in_t = process(in_img).to(self.device) | |
out_t = self.alias_net(self.G_A_net(in_t, self.ref_t)) | |
save(out_t, out_img) | |
def pixelize_modified(self, in_img, pixel_size, upscale_after) -> Image.Image: | |
with torch.no_grad(): | |
in_img = in_img.convert('RGB') | |
# limit in_img size to 1024x1024 so it didn't destroyed by large image | |
if in_img.size[0] > 1024 or in_img.size[1] > 1024: | |
in_img.thumbnail((1024, 1024), Image.NEAREST) | |
in_img.resize((in_img.size[0] * 4 // pixel_size, in_img.size[1] * 4 // pixel_size)) | |
in_t = process(in_img).to(self.device) | |
out_t = self.alias_net(self.G_A_net(in_t, self.ref_t)) | |
img = to_image(out_t, pixel_size, upscale_after) | |
return img | |
def to_image(tensor, pixel_size, upscale_after): | |
img = tensor.data[0].cpu().float().numpy() | |
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0 | |
img = img.astype(np.uint8) | |
img = Image.fromarray(img) | |
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST) | |
if upscale_after: | |
img = img.resize((img.size[0]*pixel_size, img.size[1]*pixel_size), resample=Image.Resampling.NEAREST) | |
return img | |
def greyscale(img): | |
gray = np.array(img.convert('L')) | |
tmp = np.expand_dims(gray, axis=2) | |
tmp = np.concatenate((tmp, tmp, tmp), axis=-1) | |
return Image.fromarray(tmp) | |
def process(img): | |
ow,oh = img.size | |
nw = int(round(ow / 4) * 4) | |
nh = int(round(oh / 4) * 4) | |
left = (ow - nw)//2 | |
top = (oh - nh)//2 | |
right = left + nw | |
bottom = top + nh | |
img = img.crop((left, top, right, bottom)) | |
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
return trans(img)[None, :, :, :] | |
def save(tensor, file): | |
img = tensor.data[0].cpu().float().numpy() | |
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0 | |
img = img.astype(np.uint8) | |
img = Image.fromarray(img) | |
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST) | |
img = img.resize((img.size[0]*4, img.size[1]*4), resample=Image.Resampling.NEAREST) | |
img.save(file) | |
def pixelize_cli(): | |
import argparse | |
import os | |
parser = argparse.ArgumentParser(description='Pixelization') | |
parser.add_argument('--input', type=str, default=None, required=True, help='path to image or directory') | |
parser.add_argument('--output', type=str, default=None, required=False, help='path to save image/images') | |
parser.add_argument('--cpu', action='store_true', help='use CPU instead of GPU') | |
args = parser.parse_args() | |
in_path = args.input | |
out_path = args.output | |
use_cpu = args.cpu | |
if not os.path.exists("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL']): | |
print("missing models") | |
pairs = [] | |
if os.path.isdir(in_path): | |
in_images = glob.glob(in_path + "/*.png") + glob.glob(in_path + "/*.jpg") | |
if not out_path: | |
out_path = os.path.join(in_path, "outputs") | |
if not os.path.exists(out_path): | |
os.makedirs(out_path) | |
elif os.path.isfile(out_path): | |
print("output cant be a file if input is a directory") | |
return | |
for i in in_images: | |
pairs += [(i, i.replace(in_path, out_path))] | |
elif os.path.isfile(in_path): | |
if not out_path: | |
base, ext = os.path.splitext(in_path) | |
out_path = base+"_pixelized"+ext | |
else: | |
if os.path.isdir(out_path): | |
_, file = os.path.split(in_path) | |
out_path = os.path.join(out_path, file) | |
pairs = [(in_path, out_path)] | |
m = Model(device = "cpu" if use_cpu else "cuda") | |
m.load() | |
for in_file, out_file in pairs: | |
print("PROCESSING", in_file, "TO", out_file) | |
m.pixelize(in_file, out_file) | |
if __name__ == "__main__": | |
pixelize_cli() |