Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import soundfile as sf | |
# Load Whisper model and processor from Hugging Face | |
processor = WhisperProcessor.from_pretrained("openai/whisper-base") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda" if torch.cuda.is_available() else "cpu") | |
def transcribe(audio_path): | |
try: | |
# Read audio file | |
audio, sampling_rate = sf.read(audio_path) | |
# Process audio | |
inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_features | |
# Move to appropriate device | |
inputs = inputs.to(model.device) | |
# Generate transcription | |
predicted_ids = model.generate(inputs) | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
return transcription | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), | |
outputs="text", | |
title="Whisper Transcription", | |
description="Upload an audio file and get the transcription using Whisper model." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |