Spaces:
Configuration error
Configuration error
import os | |
import sys | |
import math | |
import docx | |
try: | |
import utils | |
from diffusion import create_diffusion | |
from download import find_model | |
except: | |
# sys.path.append(os.getcwd()) | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
# sys.path[0] | |
# os.path.split(sys.path[0]) | |
import utils | |
from diffusion import create_diffusion | |
from download import find_model | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
import argparse | |
import torchvision | |
from einops import rearrange | |
from models import get_models | |
from torchvision.utils import save_image | |
from diffusers.models import AutoencoderKL | |
from models.clip import TextEmbedder | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
sys.path.append("..") | |
from datasets import video_transforms | |
from utils import mask_generation_before | |
from natsort import natsorted | |
from diffusers.utils.import_utils import is_xformers_available | |
config_path = "/mnt/petrelfs/zhouyan/project/i2v/configs/sample_i2v.yaml" | |
args = OmegaConf.load(config_path) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(args) | |
def model_i2v_fun(args): | |
if args.seed: | |
torch.manual_seed(args.seed) | |
torch.set_grad_enabled(False) | |
if args.ckpt is None: | |
raise ValueError("Please specify a checkpoint path using --ckpt <path>") | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
args.image_h = args.image_size[0] | |
args.image_w = args.image_size[1] | |
args.latent_h = latent_h | |
args.latent_w = latent_w | |
print("loading model") | |
model = get_models(args).to(device) | |
if args.use_compile: | |
model = torch.compile(model) | |
ckpt_path = args.ckpt | |
state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema'] | |
model.load_state_dict(state_dict) | |
print('loading success') | |
model.eval() | |
pretrained_model_path = args.pretrained_model_path | |
diffusion = create_diffusion(str(args.num_sampling_steps)) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device) | |
text_encoder = TextEmbedder(pretrained_model_path).to(device) | |
# if args.use_fp16: | |
# print('Warning: using half precision for inference') | |
# vae.to(dtype=torch.float16) | |
# model.to(dtype=torch.float16) | |
# text_encoder.to(dtype=torch.float16) | |
return vae, model, text_encoder, diffusion | |
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): | |
b,f,c,h,w=video_input.shape | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
# prepare inputs | |
if args.use_fp16: | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w | |
masked_video = masked_video.to(dtype=torch.float16) | |
mask = mask.to(dtype=torch.float16) | |
else: | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w | |
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() | |
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) | |
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() | |
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) | |
# classifier_free_guidance | |
if args.do_classifier_free_guidance: | |
masked_video = torch.cat([masked_video] * 2) | |
mask = torch.cat([mask] * 2) | |
z = torch.cat([z] * 2) | |
prompt_all = [prompt] + [args.negative_prompt] | |
else: | |
masked_video = masked_video | |
mask = mask | |
z = z | |
prompt_all = [prompt] | |
text_prompt = text_encoder(text_prompts=prompt_all, train=False) | |
model_kwargs = dict(encoder_hidden_states=text_prompt, | |
class_labels=None, | |
cfg_scale=args.cfg_scale, | |
use_fp16=args.use_fp16,) # tav unet | |
# Sample images: | |
if args.sample_method == 'ddim': | |
samples = diffusion.ddim_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ | |
mask=mask, x_start=masked_video, use_concat=args.use_mask | |
) | |
elif args.sample_method == 'ddpm': | |
samples = diffusion.p_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ | |
mask=mask, x_start=masked_video, use_concat=args.use_mask | |
) | |
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] | |
if args.use_fp16: | |
samples = samples.to(dtype=torch.float16) | |
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] | |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] | |
return video_clip | |
def get_input(path,args): | |
input_path = path | |
# input_path = args.input_path | |
transform_video = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.ResizeVideo((args.image_h, args.image_w)), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) | |
if input_path is not None: | |
print(f'loading video from {input_path}') | |
if os.path.isdir(input_path): | |
file_list = os.listdir(input_path) | |
video_frames = [] | |
if args.mask_type.startswith('onelast'): | |
num = int(args.mask_type.split('onelast')[-1]) | |
# get first and last frame | |
first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) | |
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) | |
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
# add zeros to frames | |
num_zeros = args.num_frames-2*num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
for i in range(num): | |
video_frames.append(last_frame) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
else: | |
for file in file_list: | |
if file.endswith('jpg') or file.endswith('png'): | |
image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0) | |
video_frames.append(image) | |
else: | |
continue | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
elif os.path.isfile(input_path): | |
_, full_file_name = os.path.split(input_path) | |
file_name, extention = os.path.splitext(full_file_name) | |
if extention == '.jpg' or extention == '.png': | |
# raise TypeError('a single image is not supported yet!!') | |
print("reading video from a image") | |
video_frames = [] | |
num = int(args.mask_type.split('first')[-1]) | |
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
num_zeros = args.num_frames-num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
else: | |
raise TypeError(f'{extention} is not supported !!') | |
else: | |
raise ValueError('Please check your path input!!') | |
else: | |
# raise ValueError('Need to give a video or some images') | |
print('given video is None, using text to video') | |
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8) | |
args.mask_type = 'all' | |
video_frames = transform_video(video_frames) | |
n = 0 | |
return video_frames, n | |
def setup_seed(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |