Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,325 Bytes
d7a54c3 2ce9b97 30d4d88 c6cda2e a64dda4 5e710c8 a64dda4 6a4b3a2 c6cda2e a64dda4 d7a54c3 bc256ab 936fa72 d7a54c3 936fa72 bc256ab c6cda2e a64dda4 d7a54c3 bc256ab 936fa72 c6cda2e d7a54c3 c6cda2e d7a54c3 30d4d88 f37ef58 30d4d88 d7a54c3 30d4d88 3c845c1 d7a54c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio # for the interface
import transformers # to load an LLM
import sentence_transformers # to load an embedding model
import faiss # to create an index
import numpy # to work with vectors
import pandas # to work with pandas
import json # to work with JSON
import datasets # to load the dataset
import spaces # for GPU
import threading
# Load the dataset and convert to pandas
full_data = datasets.load_dataset("ccm/publications")["train"].to_pandas()
# Define the base URL for Google Scholar
SCHOLAR_URL = "https://scholar.google.com"
# Filter out any publications without an abstract
filter = [
'"abstract": null' in json.dumps(bibdict)
for bibdict in full_data["bib_dict"].values
]
data = full_data[~pandas.Series(filter)]
data.reset_index(inplace=True)
# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)
# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer("allenai-specter")
# Define the search function
def search(query: str, k: int) -> tuple[str]:
query = numpy.expand_dims(model.encode(query), axis=0)
faiss.normalize_L2(query)
D, I = index.search(query, k)
top_five = data.loc[I[0]]
search_results = "You are an AI assistant who delights in helping people" \
+ "learn about research from the Design Research Collective. Here are" \
+ "several really cool abstracts:\n\n"
references = "\n\n## References\n\n"
for i in range(k):
search_results += top_five["bib_dict"].values[i]["abstract"] + "\n"
references += str(i+1) + ". [" + top_five["bib_dict"].values[i]["title"] + "]" \
+ "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ")\n"
search_results += "\nSummarize the above abstracts as you respond to the following query:"
print(search_results)
return search_results, references
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-0.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
def preprocess(message: str) -> tuple[str]:
"""Applies a preprocessing step to the user's message before the LLM receives it"""
block_search_results, formatted_search_results = search(message, 5)
return block_search_results + message, formatted_search_results
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
"""Applies a postprocessing step to the LLM's response before the user receives it"""
return response + bypass_from_preprocessing
def predict(message: str, history: list[str]) -> str:
"""This function is responsible for crafting a response"""
# Apply preprocessing
message, bypass = preprocess(message)
# This is some handling that is applied to the history variable to put it in a good format
if isinstance(history, list):
if len(history) > 0:
history = history[-1]
history_transformer_format = [
{"role": "assistant" if idx&1 else "user", "content": msg}
for idx, msg in enumerate(history)
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt")
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512
)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
yield partial_message + bypass
# Create and run the gradio interface
gradio.ChatInterface(predict).launch(debug=True) |