Spaces:
Runtime error
Runtime error
streaming outputs
#3
by
akhaliq
HF staff
- opened
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import time
|
3 |
import json
|
4 |
from cerebras.cloud.sdk import Cerebras
|
5 |
-
from typing import List, Dict, Tuple, Any
|
6 |
from tenacity import retry, stop_after_attempt, wait_fixed
|
7 |
|
8 |
def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]:
|
@@ -26,9 +26,10 @@ def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int,
|
|
26 |
else:
|
27 |
return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"}
|
28 |
|
29 |
-
def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, float]
|
30 |
"""
|
31 |
Generate a response to the given prompt using a step-by-step reasoning approach.
|
|
|
32 |
"""
|
33 |
system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES."""
|
34 |
|
@@ -48,14 +49,20 @@ def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, f
|
|
48 |
thinking_time = time.time() - start_time
|
49 |
total_thinking_time += thinking_time
|
50 |
|
51 |
-
|
|
|
|
|
52 |
messages.append({"role": "assistant", "content": json.dumps(step_data)})
|
53 |
|
|
|
|
|
|
|
54 |
if step_data.get('next_action') == 'final_answer':
|
55 |
break
|
56 |
|
57 |
step_count += 1
|
58 |
|
|
|
59 |
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
|
60 |
|
61 |
start_time = time.time()
|
@@ -63,26 +70,33 @@ def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, f
|
|
63 |
thinking_time = time.time() - start_time
|
64 |
total_thinking_time += thinking_time
|
65 |
|
66 |
-
steps.append(("Final Answer", final_data.get('content', 'No final answer provided.')
|
67 |
-
|
68 |
-
|
|
|
69 |
|
70 |
-
def
|
71 |
"""
|
72 |
-
|
73 |
"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Gradio Blocks Interface with a Chatbot component and API key input
|
86 |
def main():
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras")
|
@@ -114,20 +128,6 @@ def main():
|
|
114 |
interactive=False
|
115 |
)
|
116 |
|
117 |
-
def respond(api_key, message, history):
|
118 |
-
if not api_key:
|
119 |
-
return history, "Please provide a valid Cerebras API key."
|
120 |
-
|
121 |
-
steps, total_time = generate_response(api_key, message)
|
122 |
-
for title, content, _ in steps:
|
123 |
-
if title.startswith("Step"):
|
124 |
-
history.append(("Assistant", f"**{title}**\n\n{content}"))
|
125 |
-
elif title == "Final Answer":
|
126 |
-
history.append(("Assistant", f"**{title}**\n\n{content}"))
|
127 |
-
else:
|
128 |
-
history.append(("Assistant", content))
|
129 |
-
return history, f"**Total thinking time:** {total_time:.2f} seconds"
|
130 |
-
|
131 |
submit_btn.click(
|
132 |
fn=respond,
|
133 |
inputs=[api_key_input, user_input, chatbot],
|
@@ -135,7 +135,7 @@ def main():
|
|
135 |
queue=True
|
136 |
)
|
137 |
|
138 |
-
#
|
139 |
user_input.submit(
|
140 |
fn=respond,
|
141 |
inputs=[api_key_input, user_input, chatbot],
|
@@ -146,4 +146,4 @@ def main():
|
|
146 |
demo.launch()
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
-
main()
|
|
|
2 |
import time
|
3 |
import json
|
4 |
from cerebras.cloud.sdk import Cerebras
|
5 |
+
from typing import List, Dict, Tuple, Any, Generator
|
6 |
from tenacity import retry, stop_after_attempt, wait_fixed
|
7 |
|
8 |
def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]:
|
|
|
26 |
else:
|
27 |
return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"}
|
28 |
|
29 |
+
def generate_response(api_key: str, prompt: str) -> Generator[Tuple[List[Tuple[str, str]], float], None, None]:
|
30 |
"""
|
31 |
Generate a response to the given prompt using a step-by-step reasoning approach.
|
32 |
+
This function is now a generator that yields each step as it's generated.
|
33 |
"""
|
34 |
system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES."""
|
35 |
|
|
|
49 |
thinking_time = time.time() - start_time
|
50 |
total_thinking_time += thinking_time
|
51 |
|
52 |
+
step_title = f"Step {step_count}: {step_data['title']}"
|
53 |
+
step_content = step_data['content']
|
54 |
+
steps.append((step_title, step_content))
|
55 |
messages.append({"role": "assistant", "content": json.dumps(step_data)})
|
56 |
|
57 |
+
# Yield the current conversation and total thinking time
|
58 |
+
yield steps, total_thinking_time
|
59 |
+
|
60 |
if step_data.get('next_action') == 'final_answer':
|
61 |
break
|
62 |
|
63 |
step_count += 1
|
64 |
|
65 |
+
# Request the final answer
|
66 |
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
|
67 |
|
68 |
start_time = time.time()
|
|
|
70 |
thinking_time = time.time() - start_time
|
71 |
total_thinking_time += thinking_time
|
72 |
|
73 |
+
steps.append(("Final Answer", final_data.get('content', 'No final answer provided.')))
|
74 |
+
|
75 |
+
# Yield the final conversation and total thinking time
|
76 |
+
yield steps, total_thinking_time
|
77 |
|
78 |
+
def respond(api_key: str, message: str, history: List[Tuple[str, str]]) -> Generator[Tuple[List[Tuple[str, str]], str], None, None]:
|
79 |
"""
|
80 |
+
Generator function to handle responses and yield updates for streaming.
|
81 |
"""
|
82 |
+
if not api_key:
|
83 |
+
yield history, "Please provide a valid Cerebras API key."
|
84 |
+
return
|
85 |
+
|
86 |
+
# Initialize the generator
|
87 |
+
response_generator = generate_response(api_key, message)
|
88 |
+
|
89 |
+
for steps, total_time in response_generator:
|
90 |
+
conversation = history.copy()
|
91 |
+
for title, content in steps[len(conversation)//2:]:
|
92 |
+
if title.startswith("Step"):
|
93 |
+
conversation.append(("Assistant", f"**{title}**\n\n{content}"))
|
94 |
+
elif title == "Final Answer":
|
95 |
+
conversation.append(("Assistant", f"**{title}**\n\n{content}"))
|
96 |
+
else:
|
97 |
+
conversation.append(("Assistant", content))
|
98 |
+
yield conversation, f"**Total thinking time:** {total_time:.2f} seconds"
|
99 |
|
|
|
100 |
def main():
|
101 |
with gr.Blocks() as demo:
|
102 |
gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras")
|
|
|
128 |
interactive=False
|
129 |
)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
submit_btn.click(
|
132 |
fn=respond,
|
133 |
inputs=[api_key_input, user_input, chatbot],
|
|
|
135 |
queue=True
|
136 |
)
|
137 |
|
138 |
+
# Allow pressing Enter to submit
|
139 |
user_input.submit(
|
140 |
fn=respond,
|
141 |
inputs=[api_key_input, user_input, chatbot],
|
|
|
146 |
demo.launch()
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
+
main()
|