A newer version of the Gradio SDK is available:
5.5.0
metadata
title: Generative Augmented Classifiers
emoji: 💻
colorFrom: gray
colorTo: indigo
sdk: gradio
sdk_version: 4.36.1
app_file: app.py
pinned: false
Generative Augmented Classifiers
Main GitHub Repo: Generative Data Augmentation | Image Classification Demo: Generative Augmented Classifiers.
This demo showcases the performance of image classifiers trained on various datasets as part of the project `Improving Fine-Grained Image Classification Using Diffusion-Based Generated Synthetic Images' dissertation.
Demo Usage Instructions
- Select the dataset, the model architecture, training methods, type of training dataset to evaluate the classifier on.
- Upload an image, or click
Sample Random Image
to select a random image from the validation dataset. - Click
Classify
to classify the image using the selected classifier. - To download the classifier, click
Download Model: <model_name>
.
The top 5 predicted labels and their corresponding probabilities are displayed.
Configuration
git clone https://huggingface.co/spaces/czl/generative-augmented-classifiers
cd generative-data-augmentation-demo
# Setup the data directory structure as shown above
conda create --name $env_name python=3.11.* # Replace $env_name with your environment name
conda activate $env_name
# Visit PyTorch website https://pytorch.org/get-started/previous-versions/#v212 for PyTorch installation instructions.
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url # Obtain the correct URL from the PyTorch website
pip install -r requirements.txt
python app.py