File size: 5,050 Bytes
238cf85
ffcb5a1
 
238cf85
 
ffcb5a1
 
238cf85
ffcb5a1
238cf85
 
 
 
d488098
238cf85
 
 
d488098
238cf85
 
 
 
 
d1dbfbe
238cf85
 
d1dbfbe
238cf85
 
 
ffcb5a1
 
 
 
 
 
 
238cf85
 
 
 
ffcb5a1
 
 
 
 
 
 
 
 
d1dbfbe
ffcb5a1
 
 
d1dbfbe
 
ffcb5a1
238cf85
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcb5a1
238cf85
 
ffcb5a1
238cf85
ffcb5a1
 
 
 
238cf85
 
ffcb5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238cf85
ffcb5a1
 
 
 
 
238cf85
ffcb5a1
238cf85
ffcb5a1
 
238cf85
 
ffcb5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238cf85
ffcb5a1
 
 
238cf85
 
ffcb5a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import torch
from PIL import Image
import numpy as np
import random
import cv2
from diffusers import DiffusionPipeline, StableDiffusionPipeline

# Setup the model
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image

# Generate T-shirt design function
def generate_tshirt_design(style, color, graphics, text=None):
    prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
    if text:
        prompt += f", text: {text}"
    image = pipe(prompt).images[0]
    return image

# T-shirt mockup generator with Gradio interface
examples = [
    ["Casual", "White", "Logo: MyBrand", None],
    ["Formal", "Black", "Text: Hello World", "Custom text"],
    ["Sports", "Red", "Graphic: Team logo", None],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # T-shirt Mockup Generator with Rookus AI
        Currently running on {power_device}.
        """)

        with gr.Row():
            style = gr.Dropdown(
                label="T-shirt Style",
                choices=["Casual", "Formal", "Sports"],
                value="Casual",
                container=False,
            )

            run_button = gr.Button("Generate Mockup", scale=0)

        result = gr.Image(label="Mockup", show_label=False)

        with gr.Accordion("Design Options", open=False):
            color = gr.Radio(
                label="T-shirt Color",
                choices=[
                    "White", "Black", "Blue", "Red", "Green", "Yellow", "Pink", "Purple", "Orange", "Brown",
                    "Gray", "Maroon", "Navy", "Teal", "Lime", "Olive", "Cyan", "Magenta", "Beige", "Turquoise",
                    "Gold", "Silver", "Lavender", "Mint", "Coral", "Indigo"
                ],
                value="White",
            )

            graphics = gr.Textbox(
                label="Graphics/Logo",
                placeholder="Enter graphics or logo details",
                visible=True,
            )

            text = gr.Textbox(
                label="Text (optional)",
                placeholder="Enter optional text",
                visible=True,
            )

        gr.Examples(
            examples=examples,
            inputs=[style, color, graphics, text]
        )

    def generate_tshirt_mockup(style, color, graphics, text=None):
        # Generate T-shirt design
        design_image = generate_tshirt_design(style, color, graphics, text)

        # Load blank T-shirt mockup template image
        mockup_template = Image.open("https://th.bing.com/th/id/OIP.oYpJxkyDYCFdF4GJulkFcQHaFj?rs=1&pid=ImgDetMain")

        # Convert design image and mockup template to numpy arrays
        design_np = np.array(design_image)
        mockup_np = np.array(mockup_template)

        # Resize design image to fit mockup (example resizing)
        design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))

        # Example: Overlay design onto mockup using OpenCV
        y_offset = mockup_np.shape[0] // 4
        x_offset = mockup_np.shape[1] // 4
        y1, y2 = y_offset, y_offset + design_resized.shape[0]
        x1, x2 = x_offset, x_offset + design_resized.shape[1]

        alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
        alpha_l = 1.0 - alpha_s

        for c in range(0, 3):
            mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
                                          alpha_l * mockup_np[y1:y2, x1:x2, c])

        # Convert back to PIL image for Gradio output
        result_image = Image.fromarray(mockup_np)

        return result_image

    run_button.click(
        fn=generate_tshirt_mockup,
        inputs=[style, color, graphics, text],
        outputs=[result]
    )

demo.queue().launch(share=True)