Modelgen1 / app.py
gaur3009's picture
Update app.py
d488098 verified
raw
history blame
5.05 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
import random
import cv2
from diffusers import DiffusionPipeline, StableDiffusionPipeline
# Setup the model
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
# Generate T-shirt design function
def generate_tshirt_design(style, color, graphics, text=None):
prompt = f"T-shirt design, style: {style}, color: {color}, graphics: {graphics}"
if text:
prompt += f", text: {text}"
image = pipe(prompt).images[0]
return image
# T-shirt mockup generator with Gradio interface
examples = [
["Casual", "White", "Logo: MyBrand", None],
["Formal", "Black", "Text: Hello World", "Custom text"],
["Sports", "Red", "Graphic: Team logo", None],
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# T-shirt Mockup Generator with Rookus AI
Currently running on {power_device}.
""")
with gr.Row():
style = gr.Dropdown(
label="T-shirt Style",
choices=["Casual", "Formal", "Sports"],
value="Casual",
container=False,
)
run_button = gr.Button("Generate Mockup", scale=0)
result = gr.Image(label="Mockup", show_label=False)
with gr.Accordion("Design Options", open=False):
color = gr.Radio(
label="T-shirt Color",
choices=[
"White", "Black", "Blue", "Red", "Green", "Yellow", "Pink", "Purple", "Orange", "Brown",
"Gray", "Maroon", "Navy", "Teal", "Lime", "Olive", "Cyan", "Magenta", "Beige", "Turquoise",
"Gold", "Silver", "Lavender", "Mint", "Coral", "Indigo"
],
value="White",
)
graphics = gr.Textbox(
label="Graphics/Logo",
placeholder="Enter graphics or logo details",
visible=True,
)
text = gr.Textbox(
label="Text (optional)",
placeholder="Enter optional text",
visible=True,
)
gr.Examples(
examples=examples,
inputs=[style, color, graphics, text]
)
def generate_tshirt_mockup(style, color, graphics, text=None):
# Generate T-shirt design
design_image = generate_tshirt_design(style, color, graphics, text)
# Load blank T-shirt mockup template image
mockup_template = Image.open("https://th.bing.com/th/id/OIP.oYpJxkyDYCFdF4GJulkFcQHaFj?rs=1&pid=ImgDetMain")
# Convert design image and mockup template to numpy arrays
design_np = np.array(design_image)
mockup_np = np.array(mockup_template)
# Resize design image to fit mockup (example resizing)
design_resized = cv2.resize(design_np, (mockup_np.shape[1] // 2, mockup_np.shape[0] // 2))
# Example: Overlay design onto mockup using OpenCV
y_offset = mockup_np.shape[0] // 4
x_offset = mockup_np.shape[1] // 4
y1, y2 = y_offset, y_offset + design_resized.shape[0]
x1, x2 = x_offset, x_offset + design_resized.shape[1]
alpha_s = design_resized[:, :, 3] / 255.0 if design_resized.shape[2] == 4 else np.ones(design_resized.shape[:2])
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
mockup_np[y1:y2, x1:x2, c] = (alpha_s * design_resized[:, :, c] +
alpha_l * mockup_np[y1:y2, x1:x2, c])
# Convert back to PIL image for Gradio output
result_image = Image.fromarray(mockup_np)
return result_image
run_button.click(
fn=generate_tshirt_mockup,
inputs=[style, color, graphics, text],
outputs=[result]
)
demo.queue().launch(share=True)