Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import logging | |
import os | |
import time | |
import numpy as np | |
import rembg | |
import torch | |
from PIL import Image | |
from tsr.system import TSR | |
from tsr.utils import remove_background, resize_foreground, save_video | |
class Timer: | |
def __init__(self): | |
self.items = {} | |
self.time_scale = 1000.0 # ms | |
self.time_unit = "ms" | |
def start(self, name: str) -> None: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.items[name] = time.time() | |
logging.info(f"{name} ...") | |
def end(self, name: str) -> float: | |
if name not in self.items: | |
return | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
start_time = self.items.pop(name) | |
delta = time.time() - start_time | |
t = delta * self.time_scale | |
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.") | |
timer = Timer() | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO | |
) | |
parser = argparse.ArgumentParser() | |
parser.add_argument("image", type=str, nargs="+", help="Path to input image(s).") | |
parser.add_argument( | |
"--device", | |
default="cuda:0", | |
type=str, | |
help="Device to use. If no CUDA-compatible device is found, will fallback to 'cpu'. Default: 'cuda:0'", | |
) | |
parser.add_argument( | |
"--pretrained-model-name-or-path", | |
default="stabilityai/TripoSR", | |
type=str, | |
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/TripoSR'", | |
) | |
parser.add_argument( | |
"--chunk-size", | |
default=8192, | |
type=int, | |
help="Evaluation chunk size for surface extraction and rendering. Smaller chunk size reduces VRAM usage but increases computation time. 0 for no chunking. Default: 8192", | |
) | |
parser.add_argument( | |
"--mc-resolution", | |
default=256, | |
type=int, | |
help="Marching cubes grid resolution. Default: 256" | |
) | |
parser.add_argument( | |
"--no-remove-bg", | |
action="store_true", | |
help="If specified, the background will NOT be automatically removed from the input image, and the input image should be an RGB image with gray background and properly-sized foreground. Default: false", | |
) | |
parser.add_argument( | |
"--foreground-ratio", | |
default=0.85, | |
type=float, | |
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85", | |
) | |
parser.add_argument( | |
"--output-dir", | |
default="output/", | |
type=str, | |
help="Output directory to save the results. Default: 'output/'", | |
) | |
parser.add_argument( | |
"--model-save-format", | |
default="obj", | |
type=str, | |
choices=["obj", "glb"], | |
help="Format to save the extracted mesh. Default: 'obj'", | |
) | |
parser.add_argument( | |
"--render", | |
action="store_true", | |
help="If specified, save a NeRF-rendered video. Default: false", | |
) | |
args = parser.parse_args() | |
output_dir = args.output_dir | |
os.makedirs(output_dir, exist_ok=True) | |
device = args.device | |
if not torch.cuda.is_available(): | |
device = "cpu" | |
timer.start("Initializing model") | |
model = TSR.from_pretrained( | |
args.pretrained_model_name_or_path, | |
config_name="config.yaml", | |
weight_name="model.ckpt", | |
) | |
model.renderer.set_chunk_size(args.chunk_size) | |
model.to(device) | |
timer.end("Initializing model") | |
timer.start("Processing images") | |
images = [] | |
if args.no_remove_bg: | |
rembg_session = None | |
else: | |
rembg_session = rembg.new_session() | |
for i, image_path in enumerate(args.image): | |
if args.no_remove_bg: | |
image = np.array(Image.open(image_path).convert("RGB")) | |
else: | |
image = remove_background(Image.open(image_path), rembg_session) | |
image = resize_foreground(image, args.foreground_ratio) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 | |
image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
if not os.path.exists(os.path.join(output_dir, str(i))): | |
os.makedirs(os.path.join(output_dir, str(i))) | |
image.save(os.path.join(output_dir, str(i), f"input.png")) | |
images.append(image) | |
timer.end("Processing images") | |
for i, image in enumerate(images): | |
logging.info(f"Running image {i + 1}/{len(images)} ...") | |
timer.start("Running model") | |
with torch.no_grad(): | |
scene_codes = model([image], device=device) | |
timer.end("Running model") | |
if args.render: | |
timer.start("Rendering") | |
render_images = model.render(scene_codes, n_views=30, return_type="pil") | |
for ri, render_image in enumerate(render_images[0]): | |
render_image.save(os.path.join(output_dir, str(i), f"render_{ri:03d}.png")) | |
save_video( | |
render_images[0], os.path.join(output_dir, str(i), f"render.mp4"), fps=30 | |
) | |
timer.end("Rendering") | |
timer.start("Exporting mesh") | |
meshes = model.extract_mesh(scene_codes, resolution=args.mc_resolution) | |
meshes[0].export(os.path.join(output_dir, str(i), f"mesh.{args.model_save_format}")) | |
timer.end("Exporting mesh") | |