Spaces:
Running
Running
File size: 17,392 Bytes
eeb8996 778a475 eeb8996 7e8138f eeb8996 9cbb786 eeb8996 778a475 00efe30 eeb8996 7e8138f eeb8996 e29f6b4 00efe30 eeb8996 7e8138f eeb8996 e29f6b4 00efe30 eeb8996 00efe30 eeb8996 e29f6b4 eeb8996 7e8138f eeb8996 7e8138f eeb8996 7e8138f eeb8996 7e8138f eeb8996 e29f6b4 00efe30 eeb8996 7e8138f eeb8996 e29f6b4 00efe30 eeb8996 00efe30 eeb8996 e29f6b4 eeb8996 7e8138f eeb8996 7e8138f eeb8996 e29f6b4 eeb8996 7e8138f eeb8996 e29f6b4 00efe30 eeb8996 7e8138f eeb8996 e29f6b4 00efe30 e29f6b4 eeb8996 00efe30 eeb8996 e29f6b4 eeb8996 7e8138f eeb8996 7e8138f eeb8996 e29f6b4 eeb8996 e29f6b4 eeb8996 e901c63 eeb8996 e65592d 6726c6a eeb8996 e29f6b4 eeb8996 c8ae5e5 eeb8996 00efe30 eeb8996 00efe30 eeb8996 00efe30 eeb8996 7e8138f eeb8996 7e8138f eeb8996 f56c9fb eeb8996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import tqdm
import time
import numpy as np
from typing import BinaryIO, Union, Tuple
from datetime import datetime, timedelta
import faster_whisper
import ctranslate2
import whisper
import torch
import gradio as gr
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
class FasterWhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.available_compute_types = ctranslate2.get_supported_compute_types("cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
self.default_beam_size = 1
def transcribe_file(self,
fileobjs: list,
model_size: str,
lang: str,
file_format: str,
istranslate: bool,
add_timestamp: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from Files
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
file_format: str
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
files_info = {}
for fileobj in fileobjs:
transcribed_segments, time_for_task = self.transcribe(
audio=fileobj.name,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
progress=progress
)
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = safe_filename(file_name)
subtitle = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format=file_format
)
print(f"{subtitle}")
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{info["subtitle"]}'
total_time += info["time_for_task"]
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
except Exception as e:
print(f"Error transcribing file on line {e}")
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
def transcribe_youtube(self,
youtubelink: str,
model_size: str,
lang: str,
file_format: str,
istranslate: bool,
add_timestamp: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from Youtube
Parameters
----------
youtubelink: str
Link of Youtube to transcribe from gr.Textbox()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
file_format: str
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = get_ytaudio(yt)
transcribed_segments, time_for_task = self.transcribe(
audio=audio,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
progress=progress
)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format=file_format
)
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
try:
if 'yt' not in locals():
yt = get_ytdata(youtubelink)
file_path = get_ytaudio(yt)
else:
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
except Exception as cleanup_error:
pass
def transcribe_mic(self,
micaudio: str,
model_size: str,
lang: str,
file_format: str,
istranslate: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from microphone
Parameters
----------
micaudio: str
Audio file path from gr.Microphone()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
file_format: str
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
compute_type: str
compute type from gr.Dropdown().
see more info : https://opennmt.net/CTranslate2/quantization.html
consider the segment as silent.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
progress(0, desc="Loading Audio..")
transcribed_segments, time_for_task = self.transcribe(
audio=micaudio,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
progress=progress
)
progress(1, desc="Completed!")
subtitle = self.generate_and_write_file(
file_name="Mic",
transcribed_segments=transcribed_segments,
add_timestamp=True,
file_format=file_format
)
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([micaudio])
def transcribe(self,
audio: Union[str, BinaryIO, np.ndarray],
lang: str,
istranslate: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
progress: gr.Progress
) -> Tuple[list, float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
lang: str
Source language of the file to transcribe from gr.Dropdown()
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
segments_result: list[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
if lang == "Automatic Detection":
lang = None
else:
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
lang = language_code_dict[lang]
segments, info = self.model.transcribe(
audio=audio,
language=lang,
task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe",
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
)
progress(0, desc="Loading audio..")
segments_result = []
for segment in segments:
progress(segment.start / info.duration, desc="Transcribing..")
segments_result.append({
"start": segment.start,
"end": segment.end,
"text": segment.text
})
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model_if_needed(self,
model_size: str,
compute_type: str,
progress: gr.Progress
):
"""
Initialize model if it doesn't match with current model setting
"""
if model_size != self.current_model_size or self.model is None or self.current_compute_type != compute_type:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.current_compute_type = compute_type
self.model = faster_whisper.WhisperModel(
device=self.device,
model_size_or_path=model_size,
download_root=os.path.join("models", "Whisper", "faster-whisper"),
compute_type=self.current_compute_type
)
@staticmethod
def generate_and_write_file(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
file_format: str,
) -> str:
"""
This method writes subtitle file and returns str to gr.Textbox
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if file_format == "SRT":
content = get_srt(transcribed_segments)
write_file(content, f"{output_path}.srt")
elif file_format == "WebVTT":
content = get_vtt(transcribed_segments)
write_file(content, f"{output_path}.vtt")
elif file_format == "txt":
content = get_txt(transcribed_segments)
write_file(content, f"{output_path}.txt")
return content
@staticmethod
def format_time(elapsed_time: float) -> str:
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()
|