Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import base64 | |
from io import BytesIO | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import torch | |
from fastapi import FastAPI | |
import numpy as np | |
from PIL import Image | |
import clip | |
from dalle.models import Dalle | |
from dalle.utils.utils import clip_score, download | |
print("Loading models...") | |
app = FastAPI() | |
url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz" | |
root = os.path.expanduser("~/.cache/minDALLE") | |
filename = os.path.basename(url) | |
pathname = filename[: -len(".tar.gz")] | |
download_target = os.path.join(root, filename) | |
result_path = os.path.join(root, pathname) | |
if not os.path.exists(result_path): | |
result_path = download(url, root) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Dalle.from_pretrained(result_path) # This will automatically download the pretrained model. | |
model.to(device=device) | |
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device) | |
model_clip.to(device=device) | |
print("Models loaded !") | |
def read_root(): | |
return {"minDALL-E!"} | |
def generate(prompt): | |
images = sample(prompt) | |
images = [to_base64(image) for image in images] | |
return {"images": images} | |
def sample(prompt): | |
# Sampling | |
images = ( | |
model.sampling(prompt=prompt, top_k=256, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device) | |
.cpu() | |
.numpy() | |
) | |
images = np.transpose(images, (0, 2, 3, 1)) | |
# CLIP Re-ranking | |
rank = clip_score( | |
prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device | |
) | |
images = images[rank] | |
pil_images = [] | |
for i in range(len(images)): | |
im = Image.fromarray((images[i] * 255).astype(np.uint8)) | |
pil_images.append(im) | |
return pil_images | |
def to_base64(pil_image): | |
buffered = BytesIO() | |
pil_image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()) |