zhigangjiang's picture
no message
88b0dcb
raw
history blame
15.6 kB
"""
@Date: 2021/07/17
@description:
"""
import sys
import os
import shutil
import argparse
import numpy as np
import json
import torch
import torch.nn.parallel
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torch.cuda
from PIL import Image
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from config.defaults import get_config, get_rank_config
from models.other.criterion import calc_criterion
from models.build import build_model
from models.other.init_env import init_env
from utils.logger import build_logger
from utils.misc import tensor2np_d, tensor2np
from dataset.build import build_loader
from evaluation.accuracy import calc_accuracy, show_heat_map, calc_ce, calc_pe, calc_rmse_delta_1, \
show_depth_normal_grad, calc_f1_score
from postprocessing.post_process import post_process
try:
from apex import amp
except ImportError:
amp = None
def parse_option():
debug = True if sys.gettrace() else False
parser = argparse.ArgumentParser(description='Panorama Layout Transformer training and evaluation script')
parser.add_argument('--cfg',
type=str,
metavar='FILE',
help='path to config file')
parser.add_argument('--mode',
type=str,
default='train',
choices=['train', 'val', 'test'],
help='train/val/test mode')
parser.add_argument('--val_name',
type=str,
choices=['val', 'test'],
help='val name')
parser.add_argument('--bs', type=int,
help='batch size')
parser.add_argument('--save_eval', action='store_true',
help='save eval result')
parser.add_argument('--post_processing', type=str,
choices=['manhattan', 'atalanta', 'manhattan_old'],
help='type of postprocessing ')
parser.add_argument('--need_cpe', action='store_true',
help='need to evaluate corner error and pixel error')
parser.add_argument('--need_f1', action='store_true',
help='need to evaluate f1-score of corners')
parser.add_argument('--need_rmse', action='store_true',
help='need to evaluate root mean squared error and delta error')
parser.add_argument('--force_cube', action='store_true',
help='force cube shape when eval')
parser.add_argument('--wall_num', type=int,
help='wall number')
args = parser.parse_args()
args.debug = debug
print("arguments:")
for arg in vars(args):
print(arg, ":", getattr(args, arg))
print("-" * 50)
return args
def main():
args = parse_option()
config = get_config(args)
if config.TRAIN.SCRATCH and os.path.exists(config.CKPT.DIR) and config.MODE == 'train':
print(f"Train from scratch, delete checkpoint dir: {config.CKPT.DIR}")
f = [int(f.split('_')[-1].split('.')[0]) for f in os.listdir(config.CKPT.DIR) if 'pkl' in f]
if len(f) > 0:
last_epoch = np.array(f).max()
if last_epoch > 10:
c = input(f"delete it (last_epoch: {last_epoch})?(Y/N)\n")
if c != 'y' and c != 'Y':
exit(0)
shutil.rmtree(config.CKPT.DIR, ignore_errors=True)
os.makedirs(config.CKPT.DIR, exist_ok=True)
os.makedirs(config.CKPT.RESULT_DIR, exist_ok=True)
os.makedirs(config.LOGGER.DIR, exist_ok=True)
if ':' in config.TRAIN.DEVICE:
nprocs = len(config.TRAIN.DEVICE.split(':')[-1].split(','))
if 'cuda' in config.TRAIN.DEVICE:
if not torch.cuda.is_available():
print(f"Cuda is not available(config is: {config.TRAIN.DEVICE}), will use cpu ...")
config.defrost()
config.TRAIN.DEVICE = "cpu"
config.freeze()
nprocs = 1
if config.MODE == 'train':
with open(os.path.join(config.CKPT.DIR, "config.yaml"), "w") as f:
f.write(config.dump(allow_unicode=True))
if config.TRAIN.DEVICE == 'cpu' or nprocs < 2:
print(f"Use single process, device:{config.TRAIN.DEVICE}")
main_worker(0, config, 1)
else:
print(f"Use {nprocs} processes ...")
mp.spawn(main_worker, nprocs=nprocs, args=(config, nprocs), join=True)
def main_worker(local_rank, cfg, world_size):
config = get_rank_config(cfg, local_rank, world_size)
logger = build_logger(config)
writer = SummaryWriter(config.CKPT.DIR)
logger.info(f"Comment: {config.COMMENT}")
cur_pid = os.getpid()
logger.info(f"Current process id: {cur_pid}")
torch.hub._hub_dir = config.CKPT.PYTORCH
logger.info(f"Pytorch hub dir: {torch.hub._hub_dir}")
init_env(config.SEED, config.TRAIN.DETERMINISTIC, config.DATA.NUM_WORKERS)
model, optimizer, criterion, scheduler = build_model(config, logger)
train_data_loader, val_data_loader = build_loader(config, logger)
if 'cuda' in config.TRAIN.DEVICE:
torch.cuda.set_device(config.TRAIN.DEVICE)
if config.MODE == 'train':
train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler)
else:
iou_results, other_results = val_an_epoch(model, val_data_loader,
criterion, config, logger, writer=None,
epoch=config.TRAIN.START_EPOCH)
results = dict(iou_results, **other_results)
if config.SAVE_EVAL:
save_path = os.path.join(config.CKPT.RESULT_DIR, f"result.json")
with open(save_path, 'w+') as f:
json.dump(results, f, indent=4)
def save(model, optimizer, epoch, iou_d, logger, writer, config):
model.save(optimizer, epoch, accuracy=iou_d['full_3d'], logger=logger, acc_d=iou_d, config=config)
for k in model.acc_d:
writer.add_scalar(f"BestACC/{k}", model.acc_d[k]['acc'], epoch)
def train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler):
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
logger.info("=" * 200)
train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch)
epoch_iou_d, _ = val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch)
if config.LOCAL_RANK == 0:
ddp = config.WORLD_SIZE > 1
save(model.module if ddp else model, optimizer, epoch, epoch_iou_d, logger, writer, config)
if scheduler is not None:
if scheduler.min_lr is not None and optimizer.param_groups[0]['lr'] <= scheduler.min_lr:
continue
scheduler.step()
writer.close()
def train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch=0):
logger.info(f'Start Train Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
model.train()
if len(config.MODEL.FINE_TUNE) > 0:
model.feature_extractor.eval()
optimizer.zero_grad()
data_len = len(train_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(train_data_loader)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
if 'corner_heat_map' in gt:
gt['corner_heat_map'] = gt['corner_heat_map'].to(device, non_blocking=True)
if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device:
imgs = imgs.type(torch.float16)
gt['depth'] = gt['depth'].type(torch.float16)
gt['ratio'] = gt['ratio'].type(torch.float16)
dt = model(imgs)
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar.set_postfix(batch_loss_d)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
for key, val in batch_loss_d.items():
writer.add_scalar(f'TrainBatchLoss/{key}', val, global_step)
if config.LOCAL_RANK != 0:
return
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'TrainEpochLoss: '
for key, val in epoch_loss_d.items():
writer.add_scalar(f'TrainEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
writer.add_scalar('LearningRate', optimizer.param_groups[0]['lr'], epoch)
logger.info(f"LearningRate: {optimizer.param_groups[0]['lr']}")
@torch.no_grad()
def val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch=0):
model.eval()
logger.info(f'Start Validate Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
data_len = len(val_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(val_data_loader)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
epoch_iou_d = {
'visible_2d': [],
'visible_3d': [],
'full_2d': [],
'full_3d': [],
'height': []
}
epoch_other_d = {
'ce': [],
'pe': [],
'f1': [],
'precision': [],
'recall': [],
'rmse': [],
'delta_1': []
}
show_index = np.random.randint(0, data_len)
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
if 'corner_heat_map' in gt:
gt['corner_heat_map'] = gt['corner_heat_map'].to(device, non_blocking=True)
dt = model(imgs)
vis_w = config.TRAIN.VIS_WEIGHT
visualization = False # (config.LOCAL_RANK == 0 and i == show_index) or config.SAVE_EVAL
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
if config.EVAL.POST_PROCESSING is not None:
depth = tensor2np(dt['depth'])
dt['processed_xyz'] = post_process(depth, type_name=config.EVAL.POST_PROCESSING,
need_cube=config.EVAL.FORCE_CUBE)
if config.EVAL.FORCE_CUBE and config.EVAL.NEED_CPE:
ce = calc_ce(tensor2np_d(dt), tensor2np_d(gt))
pe = calc_pe(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['ce'].append(ce)
epoch_other_d['pe'].append(pe)
if config.EVAL.NEED_F1:
f1, precision, recall = calc_f1_score(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['f1'].append(f1)
epoch_other_d['precision'].append(precision)
epoch_other_d['recall'].append(recall)
if config.EVAL.NEED_RMSE:
rmse, delta_1 = calc_rmse_delta_1(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['rmse'].append(rmse)
epoch_other_d['delta_1'].append(delta_1)
visb_iou, full_iou, iou_height, pano_bds, full_iou_2ds = calc_accuracy(tensor2np_d(dt), tensor2np_d(gt),
visualization, h=vis_w // 2)
epoch_iou_d['visible_2d'].append(visb_iou[0])
epoch_iou_d['visible_3d'].append(visb_iou[1])
epoch_iou_d['full_2d'].append(full_iou[0])
epoch_iou_d['full_3d'].append(full_iou[1])
epoch_iou_d['height'].append(iou_height)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar.set_postfix(batch_loss_d)
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
if writer:
for key, val in batch_loss_d.items():
writer.add_scalar(f'ValBatchLoss/{key}', val, global_step)
if not visualization:
continue
gt_grad_imgs, dt_grad_imgs = show_depth_normal_grad(dt, gt, device, vis_w)
dt_heat_map_imgs = None
gt_heat_map_imgs = None
if 'corner_heat_map' in gt:
dt_heat_map_imgs, gt_heat_map_imgs = show_heat_map(dt, gt, vis_w)
if config.TRAIN.VIS_MERGE or config.SAVE_EVAL:
imgs = []
for j in range(len(pano_bds)):
# floorplan = np.concatenate([visb_iou[2][j], full_iou[2][j]], axis=-1)
floorplan = full_iou[2][j]
margin_w = int(floorplan.shape[-1] * (60/512))
floorplan = floorplan[:, :, margin_w:-margin_w]
grad_h = dt_grad_imgs[0].shape[1]
vis_merge = [
gt_grad_imgs[j],
pano_bds[j][:, grad_h:-grad_h],
dt_grad_imgs[j]
]
if 'corner_heat_map' in gt:
vis_merge = [dt_heat_map_imgs[j], gt_heat_map_imgs[j]] + vis_merge
img = np.concatenate(vis_merge, axis=-2)
img = np.concatenate([img, ], axis=-1)
# img = gt_grad_imgs[j]
imgs.append(img)
if writer:
writer.add_images('VIS/Merge', np.array(imgs), global_step)
if config.SAVE_EVAL:
for k in range(len(imgs)):
img = imgs[k] * 255.0
save_path = os.path.join(config.CKPT.RESULT_DIR, f"{gt['id'][k]}_{full_iou_2ds[k]:.5f}.png")
Image.fromarray(img.transpose(1, 2, 0).astype(np.uint8)).save(save_path)
elif writer:
writer.add_images('IoU/Visible_Floorplan', visb_iou[2], global_step)
writer.add_images('IoU/Full_Floorplan', full_iou[2], global_step)
writer.add_images('IoU/Boundary', pano_bds, global_step)
writer.add_images('Grad/gt', gt_grad_imgs, global_step)
writer.add_images('Grad/dt', dt_grad_imgs, global_step)
if config.LOCAL_RANK != 0:
return
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'ValEpochLoss: '
for key, val in epoch_loss_d.items():
if writer:
writer.add_scalar(f'ValEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_iou_d = dict(zip(epoch_iou_d.keys(), [np.array(epoch_iou_d[k]).mean() for k in epoch_iou_d.keys()]))
s = 'ValEpochIoU: '
for key, val in epoch_iou_d.items():
if writer:
writer.add_scalar(f'ValEpochIoU/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_other_d = dict(zip(epoch_other_d.keys(),
[np.array(epoch_other_d[k]).mean() if len(epoch_other_d[k]) > 0 else 0 for k in
epoch_other_d.keys()]))
logger.info(f'other acc: {epoch_other_d}')
return epoch_iou_d, epoch_other_d
if __name__ == '__main__':
main()