pdr209's picture
add lcmlora instructions
d994c55
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
language:
- en
tags:
- stable-diffusion
- stable-diffusion-xl
- stable-diffusion-xl-lcm
- stable-diffusion-xl-lcmlora
- tensorrt
- text-to-image
---
# Stable Diffusion XL 1.0 TensorRT
## Introduction
This repository hosts the TensorRT versions(sdxl, sdxl-lcm, sdxl-lcmlora) of **Stable Diffusion XL 1.0** created in collaboration with [NVIDIA](https://huggingface.co/nvidia). The optimized versions give substantial improvements in speed and efficiency.
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
![examples](./examples.jpg)
## Model Description
- **Developed by:** Stability AI
- **Model type:** Diffusion-based text-to-image generative model
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/LICENSE.md)
- **Model Description:** This is a conversion of the [SDXL base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [SDXL refiner 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0) models for [NVIDIA TensorRT](https://developer.nvidia.com/tensorrt) optimized inference
## Performance Comparison
#### Timings for 30 steps at 1024x1024
| Accelerator | Baseline (non-optimized) | NVIDIA TensorRT (optimized) | Percentage improvement |
|-------------|--------------------------|-----------------------------|------------------------|
| A10 | 9399 ms | 8160 ms | ~13% |
| A100 | 3704 ms | 2742 ms | ~26% |
| H100 | 2496 ms | 1471 ms | ~41% |
#### Image throughput for 30 steps at 1024x1024
| Accelerator | Baseline (non-optimized) | NVIDIA TensorRT (optimized) | Percentage improvement |
|-------------|--------------------------|-----------------------------|------------------------|
| A10 | 0.10 images/sec | 0.12 images/sec | ~20% |
| A100 | 0.27 images/sec | 0.36 images/sec | ~33% |
| H100 | 0.40 images/sec | 0.68 images/sec | ~70% |
#### Timings for Latent Consistency Model(LCM) version for 4 steps at 1024x1024
| Accelerator | CLIP | Unet | VAE |Total |
|-------------|--------------------------|-----------------------------|------------------------|------------------------|
| A100 | 1.08 ms | 192.02 ms | 228.34 ms | 426.16 ms |
| H100 | 0.78 ms | 102.8 ms | 126.95 ms | 234.22 ms |
## Usage Example
1. Following the [setup instructions](https://github.com/rajeevsrao/TensorRT/blob/release/9.2/demo/Diffusion/README.md) on launching a TensorRT NGC container.
```shell
git clone https://github.com/rajeevsrao/TensorRT.git
cd TensorRT
git checkout release/9.2
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.11-py3 /bin/bash
```
2. Download the SDXL TensorRT files from this repo
```shell
git lfs install
git clone https://huggingface.co/stabilityai/stable-diffusion-xl-1.0-tensorrt
cd stable-diffusion-xl-1.0-tensorrt
git lfs pull
cd ..
```
3. Install libraries and requirements
```shell
cd demo/Diffusion
python3 -m pip install --upgrade pip
pip3 install -r requirements.txt
python3 -m pip install --pre --upgrade --extra-index-url https://pypi.nvidia.com tensorrt
```
4. Perform TensorRT optimized inference:
- **SDXL**
The first invocation produces plan files in `engine_xl_base` and `engine_xl_refiner` specific to the accelerator being run on and are reused for later invocations.
```
python3 demo_txt2img_xl.py \
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" \
--build-static-batch \
--use-cuda-graph \
--num-warmup-runs 1 \
--width 1024 \
--height 1024 \
--denoising-steps 30 \
--onnx-base-dir /workspace/stable-diffusion-xl-1.0-tensorrt/sdxl-1.0-base \
--onnx-refiner-dir /workspace/stable-diffusion-xl-1.0-tensorrt/sdxl-1.0-refiner
```
- **SDXL-LCM**
The first invocation produces plan files in --engine-dir specific to the accelerator being run on and are reused for later invocations.
```
python3 demo_txt2img_xl.py \
""Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"" \
--version=xl-1.0 \
--onnx-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm \
--engine-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm/engine-sdxl-lcm-nocfg \
--scheduler LCM \
--denoising-steps 4 \
--guidance-scale 0.0 \
--seed 42
```
- **SDXL-LCMLORA**
The first invocation produces plan files in --engine-dir specific to the accelerator being run on and are reused for later invocations.
```
python3 demo_txt2img_xl.py \
""Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"" \
--version=xl-1.0 \
--onnx-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcmlora \
--engine-dir /workspace/stable-diffusion-xl-1.0-tensorrt/lcm/engine-sdxl-lcmlora-nocfg \
--scheduler LCM \
--lora-path latent-consistency/lcm-lora-sdxl \
--lora-scale 1.0 \
--denoising-steps 4 \
--guidance-scale 0.0 \
--seed 42
```