Meta-Llama-3-70B-Instruct
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 1.2884
- Rewards/chosen: -0.0888
- Rewards/rejected: -0.1138
- Rewards/accuracies: 0.6132
- Rewards/margins: 0.0250
- Logps/rejected: -1.1382
- Logps/chosen: -0.8884
- Logits/rejected: -0.0033
- Logits/chosen: 0.2012
- Nll Loss: 1.2075
- Log Odds Ratio: -0.6278
- Log Odds Chosen: 0.3768
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2483 | 0.9999 | 3555 | 1.2884 | -0.0888 | -0.1138 | 0.6132 | 0.0250 | -1.1382 | -0.8884 | -0.0033 | 0.2012 | 1.2075 | -0.6278 | 0.3768 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 10
Model tree for statking/Meta-Llama-3-70B-Instruct
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct