fine_tuned_XLMROBERTA_cs_wikann
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on a czech wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.1543
- Precision: 0.9203
- Recall: 0.9342
- F1: 0.9272
- Accuracy: 0.9732
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.51 | 0.27 | 500 | 0.1995 | 0.7873 | 0.8274 | 0.8069 | 0.9435 |
0.2164 | 0.53 | 1000 | 0.2216 | 0.7743 | 0.8430 | 0.8072 | 0.9407 |
0.1963 | 0.8 | 1500 | 0.1673 | 0.8465 | 0.8849 | 0.8653 | 0.9534 |
0.1478 | 1.07 | 2000 | 0.1612 | 0.8850 | 0.9 | 0.8925 | 0.9629 |
0.1316 | 1.33 | 2500 | 0.1508 | 0.8765 | 0.9081 | 0.8920 | 0.9615 |
0.1156 | 1.6 | 3000 | 0.1561 | 0.9028 | 0.9081 | 0.9054 | 0.9656 |
0.1069 | 1.87 | 3500 | 0.1544 | 0.9009 | 0.9091 | 0.9050 | 0.9651 |
0.0925 | 2.13 | 4000 | 0.1724 | 0.9008 | 0.9216 | 0.9111 | 0.9662 |
0.0791 | 2.4 | 4500 | 0.1385 | 0.9096 | 0.9201 | 0.9148 | 0.9705 |
0.0739 | 2.67 | 5000 | 0.1309 | 0.9130 | 0.9254 | 0.9192 | 0.9701 |
0.0732 | 2.93 | 5500 | 0.1593 | 0.9035 | 0.9190 | 0.9112 | 0.9679 |
0.0538 | 3.2 | 6000 | 0.1550 | 0.9193 | 0.9309 | 0.9251 | 0.9722 |
0.0529 | 3.47 | 6500 | 0.1451 | 0.9112 | 0.9330 | 0.9220 | 0.9710 |
0.0521 | 3.73 | 7000 | 0.1510 | 0.9185 | 0.9323 | 0.9253 | 0.9721 |
0.0526 | 4.0 | 7500 | 0.1378 | 0.9173 | 0.9325 | 0.9249 | 0.9727 |
0.0377 | 4.27 | 8000 | 0.1501 | 0.9164 | 0.9344 | 0.9253 | 0.9728 |
0.0382 | 4.53 | 8500 | 0.1541 | 0.9213 | 0.9352 | 0.9282 | 0.9729 |
0.0358 | 4.8 | 9000 | 0.1543 | 0.9203 | 0.9342 | 0.9272 | 0.9732 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 38
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for stulcrad/fine_tuned_XLMROBERTA_cs_wikann
Base model
FacebookAI/xlm-roberta-largeDataset used to train stulcrad/fine_tuned_XLMROBERTA_cs_wikann
Evaluation results
- Precision on wikiannvalidation set self-reported0.920
- Recall on wikiannvalidation set self-reported0.934
- F1 on wikiannvalidation set self-reported0.927
- Accuracy on wikiannvalidation set self-reported0.973