Edit model card

w

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Grain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0084
  • Wer: 0.0055
  • Cer: 0.0011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2656 1.0 1296 0.0886 0.0909 0.0165
0.0752 2.0 2592 0.0589 0.0620 0.0117
0.0529 3.0 3888 0.0448 0.0408 0.0081
0.0391 4.0 5184 0.0409 0.0374 0.0073
0.032 5.0 6480 0.0323 0.0299 0.0058
0.0268 6.0 7776 0.0326 0.0348 0.0065
0.0234 7.0 9072 0.0236 0.0243 0.0050
0.0207 8.0 10368 0.0228 0.0289 0.0057
0.0179 9.0 11664 0.0235 0.0240 0.0048
0.0163 10.0 12960 0.0268 0.0280 0.0054
0.0157 11.0 14256 0.0258 0.0352 0.0067
0.0125 12.0 15552 0.0205 0.0221 0.0046
0.0116 13.0 16848 0.0187 0.0161 0.0035
0.0113 14.0 18144 0.0193 0.0215 0.0041
0.0111 15.0 19440 0.0185 0.0209 0.0041
0.01 16.0 20736 0.0188 0.0191 0.0038
0.0098 17.0 22032 0.0132 0.0143 0.0027
0.0082 18.0 23328 0.0155 0.0161 0.0032
0.0077 19.0 24624 0.0180 0.0214 0.0041
0.0073 20.0 25920 0.0170 0.0145 0.0029
0.0075 21.0 27216 0.0134 0.0170 0.0030
0.0067 22.0 28512 0.0120 0.0130 0.0026
0.0061 23.0 29808 0.0125 0.0155 0.0031
0.0054 24.0 31104 0.0141 0.0130 0.0024
0.0051 25.0 32400 0.0134 0.0109 0.0022
0.0052 26.0 33696 0.0103 0.0108 0.0022
0.0046 27.0 34992 0.0092 0.0095 0.0018
0.004 28.0 36288 0.0140 0.0123 0.0023
0.004 29.0 37584 0.0110 0.0133 0.0024
0.0035 30.0 38880 0.0110 0.0103 0.0021
0.0035 31.0 40176 0.0101 0.0064 0.0016
0.0035 32.0 41472 0.0148 0.0124 0.0024
0.003 33.0 42768 0.0090 0.0053 0.0012
0.0031 34.0 44064 0.0096 0.0073 0.0015
0.0032 35.0 45360 0.0071 0.0057 0.0011
0.0025 36.0 46656 0.0097 0.0078 0.0017
0.0023 37.0 47952 0.0116 0.0066 0.0014
0.0024 38.0 49248 0.0087 0.0076 0.0015
0.003 39.0 50544 0.0098 0.0074 0.0015
0.002 40.0 51840 0.0122 0.0108 0.0019
0.0017 41.0 53136 0.0089 0.0054 0.0012
0.0018 42.0 54432 0.0094 0.0064 0.0015
0.0019 43.0 55728 0.0084 0.0055 0.0011

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sulaimank/w2v-bert-grain-lg-v5

Finetuned
(181)
this model

Evaluation results