checkpoints
This model is a fine-tuned version of mozilla/distilvit on an unknown dataset. It achieves the following results on the evaluation set:
- Gen Len: 10.6487
- Loss: 0.1739
- Meteor: 0.4120
- Rouge1: 50.0916
- Rouge2: 24.7223
- Rougel: 46.9416
- Rougelsum: 46.9372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Gen Len | Validation Loss | Meteor | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|---|---|
No log | 0.3891 | 100 | 10.4163 | 0.1764 | 0.4117 | 50.0198 | 24.6331 | 46.9071 | 46.8907 |
No log | 0.7782 | 200 | 10.6487 | 0.1739 | 0.4120 | 50.0916 | 24.7223 | 46.9416 | 46.9372 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference API (serverless) does not yet support transformers models for this pipeline type.