metadata
language:
- en
license: other
tags:
- axolotl
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- science
- physics
- chemistry
- biology
- math
- qwen
- qwen2
- TensorBlock
- GGUF
base_model: Weyaxi/Einstein-v7-Qwen2-7B
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- TIGER-Lab/ScienceEval
- jondurbin/airoboros-3.2
- LDJnr/Capybara
- Cot-Alpaca-GPT4-From-OpenHermes-2.5
- STEM-AI-mtl/Electrical-engineering
- knowrohit07/saraswati-stem
- sablo/oasst2_curated
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- bigbio/med_qa
- meta-math/MetaMathQA-40K
- openbookqa
- piqa
- metaeval/reclor
- derek-thomas/ScienceQA
- scibench
- sciq
- Open-Orca/SlimOrca
- migtissera/Synthia-v1.3
- TIGER-Lab/ScienceEval
- allenai/WildChat
- microsoft/orca-math-word-problems-200k
- openchat/openchat_sharegpt4_dataset
- teknium/GPTeacher-General-Instruct
- m-a-p/CodeFeedback-Filtered-Instruction
- totally-not-an-llm/EverythingLM-data-V3
- HuggingFaceH4/no_robots
- OpenAssistant/oasst_top1_2023-08-25
- WizardLM/WizardLM_evol_instruct_70k
- abacusai/SystemChat-1.1
- H-D-T/Buzz-V1.2
model-index:
- name: Einstein-v7-Qwen2-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 41
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.84
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 15.18
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.6
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.06
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 34.4
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Weyaxi/Einstein-v7-Qwen2-7B - GGUF
This repo contains GGUF format model files for Weyaxi/Einstein-v7-Qwen2-7B.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Einstein-v7-Qwen2-7B-Q2_K.gguf | Q2_K | 2.809 GB | smallest, significant quality loss - not recommended for most purposes |
Einstein-v7-Qwen2-7B-Q3_K_S.gguf | Q3_K_S | 3.253 GB | very small, high quality loss |
Einstein-v7-Qwen2-7B-Q3_K_M.gguf | Q3_K_M | 3.547 GB | very small, high quality loss |
Einstein-v7-Qwen2-7B-Q3_K_L.gguf | Q3_K_L | 3.808 GB | small, substantial quality loss |
Einstein-v7-Qwen2-7B-Q4_0.gguf | Q4_0 | 4.127 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Einstein-v7-Qwen2-7B-Q4_K_S.gguf | Q4_K_S | 4.152 GB | small, greater quality loss |
Einstein-v7-Qwen2-7B-Q4_K_M.gguf | Q4_K_M | 4.361 GB | medium, balanced quality - recommended |
Einstein-v7-Qwen2-7B-Q5_0.gguf | Q5_0 | 4.950 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Einstein-v7-Qwen2-7B-Q5_K_S.gguf | Q5_K_S | 4.950 GB | large, low quality loss - recommended |
Einstein-v7-Qwen2-7B-Q5_K_M.gguf | Q5_K_M | 5.071 GB | large, very low quality loss - recommended |
Einstein-v7-Qwen2-7B-Q6_K.gguf | Q6_K | 5.825 GB | very large, extremely low quality loss |
Einstein-v7-Qwen2-7B-Q8_0.gguf | Q8_0 | 7.542 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Einstein-v7-Qwen2-7B-GGUF --include "Einstein-v7-Qwen2-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Einstein-v7-Qwen2-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'