thomas0104's picture
Librarian Bot: Add base_model information to model (#1)
d201bb3
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper medium nan-tw only char
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 nan-tw
          type: mozilla-foundation/common_voice_11_0
          config: nan-tw
          split: test
          args: nan-tw
        metrics:
          - type: wer
            value: 45.2824427480916
            name: Wer

Whisper medium nan-tw only char

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9944
  • Wer: 45.2824
  • Cer: 45.3667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5832 1.04 1000 1.0634 56.3053 56.4745
0.1467 2.08 2000 1.0407 50.9618 51.0112
0.016 3.13 3000 1.0226 46.4427 46.5137
0.0001 5.01 4000 0.9974 45.4656 45.6082
0.0001 6.05 5000 0.9944 45.2824 45.3667

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2