|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tmnam20/VieGLUE |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert-base-multilingual-cased-mnli-1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: tmnam20/VieGLUE/MNLI |
|
type: tmnam20/VieGLUE |
|
config: mnli |
|
split: validation_matched |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8031936533767291 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-multilingual-cased-mnli-1 |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5349 |
|
- Accuracy: 0.8032 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.8082 | 0.04 | 500 | 0.7958 | 0.6485 | |
|
| 0.7259 | 0.08 | 1000 | 0.7455 | 0.6895 | |
|
| 0.7018 | 0.12 | 1500 | 0.6970 | 0.7118 | |
|
| 0.7026 | 0.16 | 2000 | 0.6827 | 0.7127 | |
|
| 0.6696 | 0.2 | 2500 | 0.6500 | 0.7323 | |
|
| 0.6744 | 0.24 | 3000 | 0.6345 | 0.7380 | |
|
| 0.6136 | 0.29 | 3500 | 0.6294 | 0.7402 | |
|
| 0.632 | 0.33 | 4000 | 0.6269 | 0.7472 | |
|
| 0.6735 | 0.37 | 4500 | 0.6195 | 0.7489 | |
|
| 0.6202 | 0.41 | 5000 | 0.6336 | 0.7414 | |
|
| 0.6495 | 0.45 | 5500 | 0.6125 | 0.7517 | |
|
| 0.6235 | 0.49 | 6000 | 0.6097 | 0.7515 | |
|
| 0.5852 | 0.53 | 6500 | 0.6068 | 0.7581 | |
|
| 0.6395 | 0.57 | 7000 | 0.6039 | 0.7493 | |
|
| 0.6009 | 0.61 | 7500 | 0.5878 | 0.7553 | |
|
| 0.6059 | 0.65 | 8000 | 0.5876 | 0.7638 | |
|
| 0.6019 | 0.69 | 8500 | 0.5829 | 0.7651 | |
|
| 0.5989 | 0.73 | 9000 | 0.5922 | 0.7612 | |
|
| 0.6195 | 0.77 | 9500 | 0.5868 | 0.7615 | |
|
| 0.6028 | 0.81 | 10000 | 0.5724 | 0.7709 | |
|
| 0.5741 | 0.86 | 10500 | 0.5670 | 0.7717 | |
|
| 0.582 | 0.9 | 11000 | 0.5702 | 0.7732 | |
|
| 0.5706 | 0.94 | 11500 | 0.5597 | 0.7755 | |
|
| 0.5676 | 0.98 | 12000 | 0.5655 | 0.7735 | |
|
| 0.5235 | 1.02 | 12500 | 0.5849 | 0.7662 | |
|
| 0.521 | 1.06 | 13000 | 0.5646 | 0.7788 | |
|
| 0.5122 | 1.1 | 13500 | 0.5717 | 0.7738 | |
|
| 0.5102 | 1.14 | 14000 | 0.5667 | 0.7765 | |
|
| 0.5152 | 1.18 | 14500 | 0.5598 | 0.7780 | |
|
| 0.4904 | 1.22 | 15000 | 0.5693 | 0.7746 | |
|
| 0.507 | 1.26 | 15500 | 0.5584 | 0.7804 | |
|
| 0.5163 | 1.3 | 16000 | 0.5570 | 0.7787 | |
|
| 0.4921 | 1.34 | 16500 | 0.5727 | 0.7798 | |
|
| 0.5249 | 1.39 | 17000 | 0.5653 | 0.7789 | |
|
| 0.4994 | 1.43 | 17500 | 0.5726 | 0.7783 | |
|
| 0.5335 | 1.47 | 18000 | 0.5547 | 0.7848 | |
|
| 0.543 | 1.51 | 18500 | 0.5541 | 0.7785 | |
|
| 0.5138 | 1.55 | 19000 | 0.5569 | 0.7842 | |
|
| 0.4626 | 1.59 | 19500 | 0.5625 | 0.7860 | |
|
| 0.4828 | 1.63 | 20000 | 0.5434 | 0.7858 | |
|
| 0.5121 | 1.67 | 20500 | 0.5495 | 0.7806 | |
|
| 0.5012 | 1.71 | 21000 | 0.5318 | 0.7900 | |
|
| 0.4609 | 1.75 | 21500 | 0.5485 | 0.7878 | |
|
| 0.4928 | 1.79 | 22000 | 0.5462 | 0.7868 | |
|
| 0.4922 | 1.83 | 22500 | 0.5305 | 0.7920 | |
|
| 0.4913 | 1.87 | 23000 | 0.5396 | 0.7891 | |
|
| 0.4992 | 1.91 | 23500 | 0.5341 | 0.7952 | |
|
| 0.4732 | 1.96 | 24000 | 0.5277 | 0.7952 | |
|
| 0.4925 | 2.0 | 24500 | 0.5339 | 0.7943 | |
|
| 0.4098 | 2.04 | 25000 | 0.5643 | 0.7911 | |
|
| 0.4168 | 2.08 | 25500 | 0.5534 | 0.7929 | |
|
| 0.4099 | 2.12 | 26000 | 0.5674 | 0.7925 | |
|
| 0.4142 | 2.16 | 26500 | 0.5652 | 0.7918 | |
|
| 0.398 | 2.2 | 27000 | 0.5875 | 0.7899 | |
|
| 0.3899 | 2.24 | 27500 | 0.5726 | 0.7975 | |
|
| 0.403 | 2.28 | 28000 | 0.5596 | 0.7968 | |
|
| 0.399 | 2.32 | 28500 | 0.5716 | 0.7885 | |
|
| 0.4176 | 2.36 | 29000 | 0.5570 | 0.7941 | |
|
| 0.3871 | 2.4 | 29500 | 0.5689 | 0.7926 | |
|
| 0.4156 | 2.44 | 30000 | 0.5648 | 0.7918 | |
|
| 0.386 | 2.49 | 30500 | 0.5650 | 0.7931 | |
|
| 0.4131 | 2.53 | 31000 | 0.5525 | 0.7948 | |
|
| 0.4202 | 2.57 | 31500 | 0.5585 | 0.7914 | |
|
| 0.4129 | 2.61 | 32000 | 0.5495 | 0.7963 | |
|
| 0.4215 | 2.65 | 32500 | 0.5524 | 0.7978 | |
|
| 0.413 | 2.69 | 33000 | 0.5578 | 0.7954 | |
|
| 0.4296 | 2.73 | 33500 | 0.5509 | 0.7966 | |
|
| 0.3602 | 2.77 | 34000 | 0.5581 | 0.7974 | |
|
| 0.3901 | 2.81 | 34500 | 0.5561 | 0.7985 | |
|
| 0.4163 | 2.85 | 35000 | 0.5502 | 0.7955 | |
|
| 0.3787 | 2.89 | 35500 | 0.5573 | 0.7951 | |
|
| 0.4285 | 2.93 | 36000 | 0.5535 | 0.7958 | |
|
| 0.3578 | 2.97 | 36500 | 0.5563 | 0.7964 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.2.0.dev20231203+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|