metadata
language:
- en
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-large-qqp-100
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QQP
type: tmnam20/VieGLUE
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.6318327974276527
- name: F1
type: f1
value: 0
xlm-roberta-large-qqp-100
This model is a fine-tuned version of xlm-roberta-large on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.6726
- Accuracy: 0.6318
- F1: 0.0
- Combined Score: 0.3159
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6588 | 0.88 | 10000 | 0.6582 | 0.6318 | 0.0 | 0.3159 |
0.6572 | 1.76 | 20000 | 0.6583 | 0.6318 | 0.0 | 0.3159 |
0.6578 | 2.64 | 30000 | 0.6771 | 0.6318 | 0.0 | 0.3159 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0