Edit model card

MPNet base trained on GooAQ triplets with hard negatives

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-gooaq-hard-negatives")
# Run inference
sentences = [
    'are hard seltzers malt liquor?',
    'Seltzer is carbonated water. “Hard seltzer” is a flavored malt beverage — essentially the same as a Lime-A-Rita or a Colt 45 or a Smirnoff Ice. These products derive their alcohol from fermented malted grains and are then carbonated, flavored and sweetened.',
    'Bleaching action of chlorine is based on oxidation while that of sulphur is based on reduction. Chlorine acts with water to produce nascent oxygen. ... Sulphour dioxide removes oxygen from the coloured substance and makes it colourless.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7413
cosine_accuracy@3 0.8697
cosine_accuracy@5 0.9055
cosine_accuracy@10 0.9427
cosine_precision@1 0.7413
cosine_precision@3 0.2899
cosine_precision@5 0.1811
cosine_precision@10 0.0943
cosine_recall@1 0.7413
cosine_recall@3 0.8697
cosine_recall@5 0.9055
cosine_recall@10 0.9427
cosine_ndcg@10 0.8442
cosine_mrr@10 0.8124
cosine_map@100 0.8148
dot_accuracy@1 0.7384
dot_accuracy@3 0.8669
dot_accuracy@5 0.9039
dot_accuracy@10 0.9389
dot_precision@1 0.7384
dot_precision@3 0.289
dot_precision@5 0.1808
dot_precision@10 0.0939
dot_recall@1 0.7384
dot_recall@3 0.8669
dot_recall@5 0.9039
dot_recall@10 0.9389
dot_ndcg@10 0.8411
dot_mrr@10 0.8095
dot_map@100 0.812

Training Details

Training Dataset

train

  • Dataset: train at 87594a1
  • Size: 2,286,783 training samples
  • Columns: question, answer, negative_1, negative_2, negative_3, negative_4, and negative_5
  • Approximate statistics based on the first 1000 samples:
    question answer negative_1 negative_2 negative_3 negative_4 negative_5
    type string string string string string string string
    details
    • min: 8 tokens
    • mean: 11.84 tokens
    • max: 23 tokens
    • min: 13 tokens
    • mean: 59.41 tokens
    • max: 158 tokens
    • min: 13 tokens
    • mean: 59.09 tokens
    • max: 139 tokens
    • min: 14 tokens
    • mean: 58.61 tokens
    • max: 139 tokens
    • min: 14 tokens
    • mean: 58.98 tokens
    • max: 173 tokens
    • min: 15 tokens
    • mean: 59.43 tokens
    • max: 137 tokens
    • min: 13 tokens
    • mean: 60.03 tokens
    • max: 146 tokens
  • Samples:
    question answer negative_1 negative_2 negative_3 negative_4 negative_5
    is toprol xl the same as metoprolol? Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure. Secondly, metoprolol and metoprolol ER have different brand-name equivalents: Brand version of metoprolol: Lopressor. Brand version of metoprolol ER: Toprol XL. Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg. Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider. Metoprolol is a type of medication called a beta blocker. It works by relaxing blood vessels and slowing heart rate, which improves blood flow and lowers blood pressure. Metoprolol can also improve the likelihood of survival after a heart attack. Metoprolol starts to work after about 2 hours, but it can take up to 1 week to fully take effect. You may not feel any different when you take metoprolol, but this doesn't mean it's not working. It's important to keep taking your medicine.
    are you experienced cd steve hoffman? The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design. I Saw the Light. Showcasing the unique talent and musical influence of country-western artist Hank Williams, this candid biography also sheds light on the legacy of drug abuse and tormented relationships that contributes to the singer's legend. (Read our ranking of his top 10.) And while Howard dresses the part of director, any notion of him as a tortured auteur or dictatorial taskmasker — the clichés of the Hollywood director — are tossed aside. He's very nice. He was a music star too. Where're you people born and brought up? We 're born and brought up here in Anambra State at Nkpor town, near Onitsha. At the age of 87 he has now retired from his live shows and all the traveling involved. And although he still picks up his Martin Guitar and does a show now and then, his life is now devoted to writing his memoirs. The owner of the mysterious voice behind all these videos is a man who's seen a lot, visiting a total of 56 intimate celebrity spaces over the course of five years. His name is Joe Sabia — that's him in the photo — and he's currently the VP of creative development at Condé Nast Entertainment.
    how are babushka dolls made? Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting. A quick scan of the auction and buy-it-now listings on eBay finds porcelain doll values ranging from around $5 and $10 to several thousand dollars or more but no dolls listed above $10,000. Japanese dolls are called as ningyō in Japanese and literally translates to 'human form'. Matyoo: All Fresno Girl dolls come just as real children are born. As of September 2016, there are over 100 characters. The main toy line includes 13-inch Dolls, the mini-series, and a variety of mini play-sets and plush dolls as well as Lalaloopsy Littles, smaller siblings of the 13-inch dolls. A spin-off known as "Lala-Oopsies" came out in late 2012. LOL dolls are little baby dolls that come wrapped inside a surprise toy ball. Each ball has layers that contain stickers, secret messages, mix and match accessories–and finally–a doll. ... The doll on the ball is almost never the doll inside. Dolls are released in series, so not every doll is available all the time.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

sentence-transformers/gooaq

  • Dataset: sentence-transformers/gooaq at b089f72
  • Size: 10,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.89 tokens
    • max: 22 tokens
    • min: 14 tokens
    • mean: 59.65 tokens
    • max: 131 tokens
  • Samples:
    question answer
    how to transfer data from ipad to usb? First, in “Locations,” tap the “On My iPhone” or “On My iPad” section. Here, tap and hold the empty space, and then select “New Folder.” Name it, and then tap “Done” to create a new folder for the files you want to transfer. Now, from the “Locations” section, select your USB flash drive.
    what quorn products are syn free? ['bacon style pieces.', 'bacon style rashers, chilled.', 'BBQ sliced fillets.', 'beef style and red onion burgers.', 'pieces.', 'chicken style slices.', 'fajita strips.', 'family roast.']
    what is the difference between turmeric ginger? Ginger offers a sweet and spicy zing to dishes. Turmeric provides a golden yellow colour and a warm and bitter taste with a peppery aroma.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss gooaq-dev_cosine_map@100
0 0 - - 0.1405
0.2869 20500 0.5303 - -
0.2939 21000 0.5328 - -
0.3009 21500 0.515 - -
0.3079 22000 0.5264 0.0297 0.7919
0.3149 22500 0.5189 - -
0.3218 23000 0.5284 - -
0.3288 23500 0.5308 - -
0.3358 24000 0.509 0.0281 0.7932
0.3428 24500 0.5074 - -
0.3498 25000 0.5196 - -
0.3568 25500 0.5041 - -
0.3638 26000 0.4976 0.0291 0.7950
0.3708 26500 0.5025 - -
0.3778 27000 0.5175 - -
0.3848 27500 0.4921 - -
0.3918 28000 0.4924 0.0298 0.7938
0.3988 28500 0.49 - -
0.4058 29000 0.4924 - -
0.4128 29500 0.4902 - -
0.4198 30000 0.4846 0.0269 0.7966
0.4268 30500 0.4815 - -
0.4338 31000 0.4881 - -
0.4408 31500 0.4848 - -
0.4478 32000 0.4882 0.0264 0.8004
0.4548 32500 0.4809 - -
0.4618 33000 0.4896 - -
0.4688 33500 0.4744 - -
0.4758 34000 0.4827 0.0252 0.8038
0.4828 34500 0.4703 - -
0.4898 35000 0.4765 - -
0.4968 35500 0.4625 - -
0.5038 36000 0.4698 0.0269 0.8025
0.5108 36500 0.4666 - -
0.5178 37000 0.4594 - -
0.5248 37500 0.4621 - -
0.5318 38000 0.4538 0.0266 0.8047
0.5387 38500 0.4576 - -
0.5457 39000 0.4594 - -
0.5527 39500 0.4503 - -
0.5597 40000 0.4538 0.0265 0.8038
0.5667 40500 0.4521 - -
0.5737 41000 0.4575 - -
0.5807 41500 0.4544 - -
0.5877 42000 0.4462 0.0245 0.8077
0.5947 42500 0.4491 - -
0.6017 43000 0.4651 - -
0.6087 43500 0.4549 - -
0.6157 44000 0.4461 0.0262 0.8046
0.6227 44500 0.4571 - -
0.6297 45000 0.4478 - -
0.6367 45500 0.4482 - -
0.6437 46000 0.4439 0.0244 0.8070
0.6507 46500 0.4384 - -
0.6577 47000 0.446 - -
0.6647 47500 0.4425 - -
0.6717 48000 0.4308 0.0248 0.8067
0.6787 48500 0.4374 - -
0.6857 49000 0.4342 - -
0.6927 49500 0.4455 - -
0.6997 50000 0.4322 0.0242 0.8077
0.7067 50500 0.4288 - -
0.7137 51000 0.4317 - -
0.7207 51500 0.4295 - -
0.7277 52000 0.4291 0.0231 0.8130
0.7347 52500 0.4279 - -
0.7417 53000 0.4287 - -
0.7486 53500 0.4252 - -
0.7556 54000 0.4341 0.0243 0.8112
0.7626 54500 0.419 - -
0.7696 55000 0.4323 - -
0.7766 55500 0.4252 - -
0.7836 56000 0.4313 0.0264 0.8107
0.7906 56500 0.4222 - -
0.7976 57000 0.4226 - -
0.8046 57500 0.4152 - -
0.8116 58000 0.4222 0.0236 0.8131
0.8186 58500 0.4184 - -
0.8256 59000 0.4144 - -
0.8326 59500 0.4242 - -
0.8396 60000 0.4148 0.0242 0.8125
0.8466 60500 0.4222 - -
0.8536 61000 0.4184 - -
0.8606 61500 0.4138 - -
0.8676 62000 0.4119 0.0240 0.8133
0.8746 62500 0.411 - -
0.8816 63000 0.4172 - -
0.8886 63500 0.4145 - -
0.8956 64000 0.4168 0.0240 0.8137
0.9026 64500 0.4071 - -
0.9096 65000 0.4119 - -
0.9166 65500 0.403 - -
0.9236 66000 0.4092 0.0238 0.8141
0.9306 66500 0.4079 - -
0.9376 67000 0.4129 - -
0.9446 67500 0.4082 - -
0.9516 68000 0.4054 0.0235 0.8149
0.9586 68500 0.4129 - -
0.9655 69000 0.4085 - -
0.9725 69500 0.414 - -
0.9795 70000 0.4075 0.0239 0.8142
0.9865 70500 0.4104 - -
0.9935 71000 0.4087 - -
1.0 71462 - - 0.8148

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 3.989 kWh
  • Carbon Emitted: 1.551 kg of CO2
  • Hours Used: 11.599 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.1.0.dev0
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tomaarsen/mpnet-base-gooaq-hard-negatives

Finetuned
(35)
this model

Datasets used to train tomaarsen/mpnet-base-gooaq-hard-negatives

Evaluation results