File size: 42,166 Bytes
2d8f7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
---

base_model: microsoft/mpnet-base
datasets:
- tomaarsen/gooaq-hard-negatives
- sentence-transformers/gooaq
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2286783
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to download a youtube video onto usb?
  sentences:
  - Copy YouTube URL to Download Go to YouTube video you want to download to USB and
    copy its URL. Paste the link to download YouTube. Choose a necessary video or
    audio format and quality.
  - Before surgeons are qualified to operate, they must meet a set of challenging
    education requirements. These generally include four years of undergraduate study,
    four years of medical school leading to a Doctor of Medicine (M.D.) degree, and
    three to eight years of surgical residency at a hospital.
  - A Roman numeral representing the number eighteen (18).
- source_sentence: what is the best diet for a leaky gut?
  sentences:
  - When a woman is pregnant, she does not continue to ovulate and will not have a
    period. Menstruation only occurs when a person is not pregnant. Although it is
    possible for women to experience some bleeding during pregnancy, this will not
    be due to their menstrual cycle.
  - To combat leaky gut, eat foods that promote the growth of healthy gut bacteria,
    including fruits, cultured dairy products, healthy fats, lean meats, and fibrous
    and fermented vegetables.
  - Popcorn Ceiling vs Asbestos Popcorn Ceiling Removal Cost CostHelper says Popcorn
    ceilings not containing asbestos can expect to pay about $1 to $3 per square foot
    or $250 to $900 to remove a popcorn ceiling from a 15'x20' room or $1,200 to $1,400
    for a 1,6000 sq.
- source_sentence: what is the difference between joint tenancy and common tenancy?
  sentences:
  - You (TV series) You is an American psychological thriller television series developed
    by Greg Berlanti and Sera Gamble. ... In December 2018, it was announced that
    the series would move to Netflix as a Netflix Original title. The second season
    was released exclusively on Netflix on December 26, 2019.
  - A normal resting heart rate range is between 60 and 100 bpm.
  - Joint tenancy also differs from tenancy in common because when one joint tenant
    dies, the other remaining joint tenants inherit the deceased tenant's interest
    in the property. However, a joint tenancy does allow owners to sell their interests.
    If one owner sells, the tenancy is converted to a tenancy in common.
- source_sentence: what is the cause of blood clots in urine?
  sentences:
  - If sufficient blood is present in the urine, the blood may form a clot. The clot
    can completely block the flow of urine, causing sudden extreme pain and inability
    to urinate. Bleeding severe enough to cause such a clot is usually caused by an
    injury to the urinary tract.
  - Distance is the magnitude (length) of the displacement vector. Path length is
    how far the object moved as it traveled from its initial position to its final
    position.
  - In fact, the brand is consistently ranked near the top of automakers in terms
    of the most expensive cars to maintain. The total maintenance costs of the average
    Audi over a 10-year span is $12,400. ... All cars are different, and many require
    more maintenance than some depending on their age and driving history.
- source_sentence: are hard seltzers malt liquor?
  sentences:
  - The BCD method measures the distance from the apex of the breast down to the wire
    line directly below it. That measurement in inches will determine your cup and
    frame size. Then take your Rib Cage measurement directly under your bra. ... For
    example, the BCD might be 4.0 and the Rib Cage of 32.
  - Seltzer is carbonated water. “Hard seltzer” is a flavored malt beverage  essentially
    the same as a Lime-A-Rita or a Colt 45 or a Smirnoff Ice. These products derive
    their alcohol from fermented malted grains and are then carbonated, flavored and
    sweetened.
  - Bleaching action of chlorine is based on oxidation while that of sulphur is based
    on reduction. Chlorine acts with water to produce nascent oxygen. ... Sulphour
    dioxide removes oxygen from the coloured substance and makes it colourless.
co2_eq_emissions:
  emissions: 1550.677005890232
  energy_consumed: 3.989372336366245
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 11.599
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on GooAQ triplets with hard negatives
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: gooaq dev
      type: gooaq-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.7413
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8697
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9055
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9427
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7413
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2899
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1811
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09427000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7413
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8697
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9055
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9427
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8441925656083314
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8123759920634883
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8147743017171518
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.7384
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.8669
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9039
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9389
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.7384
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28896666666666665
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18078000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09389000000000002
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7384
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8669
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9039
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9389
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8410831459293242
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8094504365079324
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8120497186357559
      name: Dot Map@100
---


# MPNet base trained on GooAQ triplets with hard negatives

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [train](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [train](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/mpnet-base-gooaq-hard-negatives")

# Run inference

sentences = [

    'are hard seltzers malt liquor?',

    'Seltzer is carbonated water. “Hard seltzer” is a flavored malt beverage — essentially the same as a Lime-A-Rita or a Colt 45 or a Smirnoff Ice. These products derive their alcohol from fermented malted grains and are then carbonated, flavored and sweetened.',

    'Bleaching action of chlorine is based on oxidation while that of sulphur is based on reduction. Chlorine acts with water to produce nascent oxygen. ... Sulphour dioxide removes oxygen from the coloured substance and makes it colourless.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7413     |

| cosine_accuracy@3   | 0.8697     |
| cosine_accuracy@5   | 0.9055     |

| cosine_accuracy@10  | 0.9427     |
| cosine_precision@1  | 0.7413     |

| cosine_precision@3  | 0.2899     |
| cosine_precision@5  | 0.1811     |

| cosine_precision@10 | 0.0943     |
| cosine_recall@1     | 0.7413     |

| cosine_recall@3     | 0.8697     |
| cosine_recall@5     | 0.9055     |

| cosine_recall@10    | 0.9427     |
| cosine_ndcg@10      | 0.8442     |

| cosine_mrr@10       | 0.8124     |
| **cosine_map@100**  | **0.8148** |

| dot_accuracy@1      | 0.7384     |

| dot_accuracy@3      | 0.8669     |

| dot_accuracy@5      | 0.9039     |

| dot_accuracy@10     | 0.9389     |

| dot_precision@1     | 0.7384     |

| dot_precision@3     | 0.289      |

| dot_precision@5     | 0.1808     |

| dot_precision@10    | 0.0939     |

| dot_recall@1        | 0.7384     |

| dot_recall@3        | 0.8669     |

| dot_recall@5        | 0.9039     |

| dot_recall@10       | 0.9389     |

| dot_ndcg@10         | 0.8411     |

| dot_mrr@10          | 0.8095     |

| dot_map@100         | 0.812      |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### train



* Dataset: [train](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)

* Size: 2,286,783 training samples

* Columns: <code>question</code>, <code>answer</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>negative_5</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              | negative_1                                                                          | negative_2                                                                          | negative_3                                                                          | negative_4                                                                          | negative_5                                                                          |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.84 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.41 tokens</li><li>max: 158 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.09 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.61 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.98 tokens</li><li>max: 173 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 59.43 tokens</li><li>max: 137 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 60.03 tokens</li><li>max: 146 tokens</li></ul> |

* Samples:

  | question                                           | answer                                                                                                                                                                                                                                                                                                                                          | negative_1                                                                                                                                                                                                                                                        | negative_2                                                                                                                                                                                                                                 | negative_3                                                                                                                                                                                                    | negative_4                                                                                                                                                                                                                                                                                                   | negative_5                                                                                                                                                                                                                                                                                                                                 |

  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>is toprol xl the same as metoprolol?</code>  | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code>                                                                                                    | <code>Secondly, metoprolol and metoprolol ER have different brand-name equivalents: Brand version of metoprolol: Lopressor. Brand version of metoprolol ER: Toprol XL.</code>                                                                                     | <code>Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.</code>                                                                                                                                     | <code>Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.</code> | <code>Metoprolol is a type of medication called a beta blocker. It works by relaxing blood vessels and slowing heart rate, which improves blood flow and lowers blood pressure. Metoprolol can also improve the likelihood of survival after a heart attack.</code>                                          | <code>Metoprolol starts to work after about 2 hours, but it can take up to 1 week to fully take effect. You may not feel any different when you take metoprolol, but this doesn't mean it's not working. It's important to keep taking your medicine.</code>                                                                               |

  | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> | <code>I Saw the Light. Showcasing the unique talent and musical influence of country-western artist Hank Williams, this candid biography also sheds light on the legacy of drug abuse and tormented relationships that contributes to the singer's legend.</code> | <code>(Read our ranking of his top 10.) And while Howard dresses the part of director, any notion of him as a tortured auteur or dictatorial taskmasker — the clichés of the Hollywood director — are tossed aside. He's very nice.</code> | <code>He was a music star too. Where're you people born and brought up? We 're born and brought up here in Anambra State at Nkpor town, near Onitsha.</code>                                                  | <code>At the age of 87 he has now retired from his live shows and all the traveling involved. And although he still picks up his Martin Guitar and does a show now and then, his life is now devoted to writing his memoirs.</code>                                                                          | <code>The owner of the mysterious voice behind all these videos is a man who's seen a lot, visiting a total of 56 intimate celebrity spaces over the course of five years. His name is Joe Sabia — that's him in the photo — and he's currently the VP of creative development at Condé Nast Entertainment.</code>                         |

  | <code>how are babushka dolls made?</code>          | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code>                                           | <code>A quick scan of the auction and buy-it-now listings on eBay finds porcelain doll values ranging from around $5 and $10 to several thousand dollars or more but no dolls listed above $10,000.</code>                                                        | <code>Japanese dolls are called as ningyō in Japanese and literally translates to 'human form'.</code>                                                                                                                                     | <code>Matyoo: All Fresno Girl dolls come just as real children are born.</code>                                                                                                                               | <code>As of September 2016, there are over 100 characters. The main toy line includes 13-inch Dolls, the mini-series, and a variety of mini play-sets and plush dolls as well as Lalaloopsy Littles, smaller siblings of the 13-inch dolls. A spin-off known as "Lala-Oopsies" came out in late 2012.</code> | <code>LOL dolls are little baby dolls that come wrapped inside a surprise toy ball. Each ball has layers that contain stickers, secret messages, mix and match accessories–and finally–a doll. ... The doll on the ball is almost never the doll inside. Dolls are released in series, so not every doll is available all the time.</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Evaluation Dataset



#### sentence-transformers/gooaq



* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 10,000 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.89 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 59.65 tokens</li><li>max: 131 tokens</li></ul> |

* Samples:

  | question                                                     | answer                                                                                                                                                                                                                                                                                                        |

  |:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>how to transfer data from ipad to usb?</code>          | <code>First, in “Locations,” tap the “On My iPhone” or “On My iPad” section. Here, tap and hold the empty space, and then select “New Folder.” Name it, and then tap “Done” to create a new folder for the files you want to transfer. Now, from the “Locations” section, select your USB flash drive.</code> |

  | <code>what quorn products are syn free?</code>               | <code>['bacon style pieces.', 'bacon style rashers, chilled.', 'BBQ sliced fillets.', 'beef style and red onion burgers.', 'pieces.', 'chicken style slices.', 'fajita strips.', 'family roast.']</code>                                                                                                      |

  | <code>what is the difference between turmeric ginger?</code> | <code>Ginger offers a sweet and spicy zing to dishes. Turmeric provides a golden yellow colour and a warm and bitter taste with a peppery aroma.</code>                                                                                                                                                       |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 32

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 32

- `per_device_eval_batch_size`: 32

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

<details><summary>Click to expand</summary>



| Epoch  | Step  | Training Loss | loss   | gooaq-dev_cosine_map@100 |

|:------:|:-----:|:-------------:|:------:|:------------------------:|

| 0      | 0     | -             | -      | 0.1405                   |

| 0.2869 | 20500 | 0.5303        | -      | -                        |

| 0.2939 | 21000 | 0.5328        | -      | -                        |

| 0.3009 | 21500 | 0.515         | -      | -                        |

| 0.3079 | 22000 | 0.5264        | 0.0297 | 0.7919                   |

| 0.3149 | 22500 | 0.5189        | -      | -                        |

| 0.3218 | 23000 | 0.5284        | -      | -                        |

| 0.3288 | 23500 | 0.5308        | -      | -                        |

| 0.3358 | 24000 | 0.509         | 0.0281 | 0.7932                   |

| 0.3428 | 24500 | 0.5074        | -      | -                        |

| 0.3498 | 25000 | 0.5196        | -      | -                        |

| 0.3568 | 25500 | 0.5041        | -      | -                        |

| 0.3638 | 26000 | 0.4976        | 0.0291 | 0.7950                   |

| 0.3708 | 26500 | 0.5025        | -      | -                        |

| 0.3778 | 27000 | 0.5175        | -      | -                        |

| 0.3848 | 27500 | 0.4921        | -      | -                        |

| 0.3918 | 28000 | 0.4924        | 0.0298 | 0.7938                   |

| 0.3988 | 28500 | 0.49          | -      | -                        |

| 0.4058 | 29000 | 0.4924        | -      | -                        |

| 0.4128 | 29500 | 0.4902        | -      | -                        |

| 0.4198 | 30000 | 0.4846        | 0.0269 | 0.7966                   |

| 0.4268 | 30500 | 0.4815        | -      | -                        |

| 0.4338 | 31000 | 0.4881        | -      | -                        |

| 0.4408 | 31500 | 0.4848        | -      | -                        |

| 0.4478 | 32000 | 0.4882        | 0.0264 | 0.8004                   |

| 0.4548 | 32500 | 0.4809        | -      | -                        |

| 0.4618 | 33000 | 0.4896        | -      | -                        |

| 0.4688 | 33500 | 0.4744        | -      | -                        |

| 0.4758 | 34000 | 0.4827        | 0.0252 | 0.8038                   |

| 0.4828 | 34500 | 0.4703        | -      | -                        |

| 0.4898 | 35000 | 0.4765        | -      | -                        |

| 0.4968 | 35500 | 0.4625        | -      | -                        |

| 0.5038 | 36000 | 0.4698        | 0.0269 | 0.8025                   |

| 0.5108 | 36500 | 0.4666        | -      | -                        |

| 0.5178 | 37000 | 0.4594        | -      | -                        |

| 0.5248 | 37500 | 0.4621        | -      | -                        |

| 0.5318 | 38000 | 0.4538        | 0.0266 | 0.8047                   |

| 0.5387 | 38500 | 0.4576        | -      | -                        |

| 0.5457 | 39000 | 0.4594        | -      | -                        |

| 0.5527 | 39500 | 0.4503        | -      | -                        |

| 0.5597 | 40000 | 0.4538        | 0.0265 | 0.8038                   |

| 0.5667 | 40500 | 0.4521        | -      | -                        |

| 0.5737 | 41000 | 0.4575        | -      | -                        |

| 0.5807 | 41500 | 0.4544        | -      | -                        |

| 0.5877 | 42000 | 0.4462        | 0.0245 | 0.8077                   |

| 0.5947 | 42500 | 0.4491        | -      | -                        |

| 0.6017 | 43000 | 0.4651        | -      | -                        |

| 0.6087 | 43500 | 0.4549        | -      | -                        |

| 0.6157 | 44000 | 0.4461        | 0.0262 | 0.8046                   |

| 0.6227 | 44500 | 0.4571        | -      | -                        |

| 0.6297 | 45000 | 0.4478        | -      | -                        |

| 0.6367 | 45500 | 0.4482        | -      | -                        |

| 0.6437 | 46000 | 0.4439        | 0.0244 | 0.8070                   |

| 0.6507 | 46500 | 0.4384        | -      | -                        |

| 0.6577 | 47000 | 0.446         | -      | -                        |

| 0.6647 | 47500 | 0.4425        | -      | -                        |

| 0.6717 | 48000 | 0.4308        | 0.0248 | 0.8067                   |

| 0.6787 | 48500 | 0.4374        | -      | -                        |

| 0.6857 | 49000 | 0.4342        | -      | -                        |

| 0.6927 | 49500 | 0.4455        | -      | -                        |

| 0.6997 | 50000 | 0.4322        | 0.0242 | 0.8077                   |

| 0.7067 | 50500 | 0.4288        | -      | -                        |

| 0.7137 | 51000 | 0.4317        | -      | -                        |

| 0.7207 | 51500 | 0.4295        | -      | -                        |

| 0.7277 | 52000 | 0.4291        | 0.0231 | 0.8130                   |

| 0.7347 | 52500 | 0.4279        | -      | -                        |

| 0.7417 | 53000 | 0.4287        | -      | -                        |

| 0.7486 | 53500 | 0.4252        | -      | -                        |

| 0.7556 | 54000 | 0.4341        | 0.0243 | 0.8112                   |

| 0.7626 | 54500 | 0.419         | -      | -                        |

| 0.7696 | 55000 | 0.4323        | -      | -                        |

| 0.7766 | 55500 | 0.4252        | -      | -                        |

| 0.7836 | 56000 | 0.4313        | 0.0264 | 0.8107                   |

| 0.7906 | 56500 | 0.4222        | -      | -                        |

| 0.7976 | 57000 | 0.4226        | -      | -                        |

| 0.8046 | 57500 | 0.4152        | -      | -                        |

| 0.8116 | 58000 | 0.4222        | 0.0236 | 0.8131                   |

| 0.8186 | 58500 | 0.4184        | -      | -                        |

| 0.8256 | 59000 | 0.4144        | -      | -                        |

| 0.8326 | 59500 | 0.4242        | -      | -                        |

| 0.8396 | 60000 | 0.4148        | 0.0242 | 0.8125                   |

| 0.8466 | 60500 | 0.4222        | -      | -                        |

| 0.8536 | 61000 | 0.4184        | -      | -                        |

| 0.8606 | 61500 | 0.4138        | -      | -                        |

| 0.8676 | 62000 | 0.4119        | 0.0240 | 0.8133                   |

| 0.8746 | 62500 | 0.411         | -      | -                        |

| 0.8816 | 63000 | 0.4172        | -      | -                        |

| 0.8886 | 63500 | 0.4145        | -      | -                        |

| 0.8956 | 64000 | 0.4168        | 0.0240 | 0.8137                   |

| 0.9026 | 64500 | 0.4071        | -      | -                        |

| 0.9096 | 65000 | 0.4119        | -      | -                        |

| 0.9166 | 65500 | 0.403         | -      | -                        |

| 0.9236 | 66000 | 0.4092        | 0.0238 | 0.8141                   |

| 0.9306 | 66500 | 0.4079        | -      | -                        |

| 0.9376 | 67000 | 0.4129        | -      | -                        |

| 0.9446 | 67500 | 0.4082        | -      | -                        |

| 0.9516 | 68000 | 0.4054        | 0.0235 | 0.8149                   |

| 0.9586 | 68500 | 0.4129        | -      | -                        |

| 0.9655 | 69000 | 0.4085        | -      | -                        |

| 0.9725 | 69500 | 0.414         | -      | -                        |

| 0.9795 | 70000 | 0.4075        | 0.0239 | 0.8142                   |

| 0.9865 | 70500 | 0.4104        | -      | -                        |

| 0.9935 | 71000 | 0.4087        | -      | -                        |

| 1.0    | 71462 | -             | -      | 0.8148                   |



</details>



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 3.989 kWh

- **Carbon Emitted**: 1.551 kg of CO2

- **Hours Used**: 11.599 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.1.0.dev0

- Transformers: 4.41.2

- PyTorch: 2.3.0+cu121

- Accelerate: 0.31.0

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->