tpoisonooo
feat(README): update model card
39b3ec2
|
raw
history blame
2.79 kB
---
library_name: peft
tags:
- generated_from_trainer
base_model: Qwen/Qwen1.5-14B-Chat
model-index:
- name: out-qwen14
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: /workspace/models/Qwen1.5-14B-Chat
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/axolotl/alpaca.json
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out-qwen14
sequence_len: 1400 # supports up to 32k
sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_mode: online
wandb_project: huixiangdou-cr
wandb_entity:
wandb_watch:
wandb_name: qwen14
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# out-qwen14
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0724 | 1.0 | 137 | 0.0507 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0