Model Card for Model ViT fine tuning on CiFAR10
It's a toy experiemnt of fine tuning ViT by using huggingface transformers.
Model Details
It's fine tuned on CiFAR10 for 1000 steps, and achieved accuracy of 98.7% on test split.
Model Description
- Developed by: verypro
- Model type: Vision Transformer
- License: MIT
- Finetuned from model [optional]: google/vit-base-patch16-224
Uses
from transformers import ViTImageProcessor, ViTForImageClassification
from torchvision import datasets
# # 初始化模型和特征提取器
image_processor = ViTImageProcessor.from_pretrained('verypro/vit-base-patch16-224-cifar10')
model = ViTForImageClassification.from_pretrained('verypro/vit-base-patch16-224-cifar10')
# 加载 CIFAR10 数据集
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True)
sample = test_dataset[0]
image = sample[0]
gt_label = sample[1]
# 保存原始图像,并打印其标签
image.save("original.png")
print(f"Ground truth class: '{test_dataset.classes[gt_label]}'")
inputs = image_processor(image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
print(logits)
predicted_class_idx = logits.argmax(-1).item()
predicted_class_label = test_dataset.classes[predicted_class_idx]
print(f"Predicted class: '{predicted_class_label}', confidence: {logits[0, predicted_class_idx]:.2f}")
The output of above code snippets should be like:
Ground truth class: 'cat'
tensor([[-1.1497, -0.1080, -0.7349, 9.2517, -1.3094, 0.5403, -0.9521, -1.0223,
-1.4102, -1.5389]], grad_fn=<AddmmBackward0>)
Predicted class: 'cat', confidence: 9.25
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.