Edit model card

roberta-base-suicide-prediction-phr

This model is a fine-tuned version of roberta-base on this dataset sourced from Reddit. It achieves the following results on the evaluation/validation set:

  • Loss: 0.1543
  • Accuracy: 0.9652972367116438
  • Recall: 0.966571403827834
  • Precision: 0.9638169257340242
  • F1: 0.9651921995935487

It achieves the following result on validation partition of this updated dataset

  • Loss: 0.08761
  • Accuracy: 0.97065
  • Recall: 0.96652
  • Precision: 0.97732
  • F1: 0.97189

Model description

This model is a finetune of roberta-base to detect suicidal tendencies in a given text.

Training and evaluation data

  • The dataset is sourced from Reddit and is available on Kaggle.
  • The dataset contains text with binary labels for suicide or non-suicide.
  • The dataset was cleaned, and following steps were applied
    • Converted to lowercase
    • Removed numbers and special characters.
    • Removed URLs, Emojis and accented characters.
    • Removed any word contractions.
    • Remove any extra white spaces and any extra spaces after a single space.
    • Removed any consecutive characters repeated more than 3 times.
    • Tokenised the text, then lemmatized it and then removed the stopwords (excluding not).
  • The cleaned dataset can be found here
  • The evaluation set had ~23000 samples, while the training set had ~186k samples, i.e. a 80:10:10 (train:test:val) split.

Training procedure

  • The model was trained on an RTXA5000 GPU.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.2023 0.09 1000 0.1868 {'accuracy': 0.9415010561710566} {'recall': 0.9389451805663809} {'precision': 0.943274752044545} {'f1': 0.9411049867627274}
0.1792 0.17 2000 0.1465 {'accuracy': 0.9528387291460103} {'recall': 0.9615484541439335} {'precision': 0.9446949714966392} {'f1': 0.9530472103004292}
0.1596 0.26 3000 0.1871 {'accuracy': 0.9523645298961072} {'recall': 0.9399844115354637} {'precision': 0.9634297887448962} {'f1': 0.9515627054749485}
0.1534 0.34 4000 0.1563 {'accuracy': 0.9518041126007674} {'recall': 0.974971854161254} {'precision': 0.9314139157772814} {'f1': 0.9526952695269527}
0.1553 0.43 5000 0.1691 {'accuracy': 0.9513730223735828} {'recall': 0.93141075604053} {'precision': 0.9697051663510955} {'f1': 0.950172276702889}
0.1537 0.52 6000 0.1347 {'accuracy': 0.9568478682588266} {'recall': 0.9644063393089114} {'precision': 0.9496844618795839} {'f1': 0.9569887852876723}
0.1515 0.6 7000 0.1276 {'accuracy': 0.9565461050997974} {'recall': 0.9426690915389279} {'precision': 0.9691924138545098} {'f1': 0.9557467732022126}
0.1453 0.69 8000 0.1351 {'accuracy': 0.960210372030866} {'recall': 0.9589503767212263} {'precision': 0.961031070994619} {'f1': 0.959989596428107}
0.1526 0.78 9000 0.1423 {'accuracy': 0.9610725524852352} {'recall': 0.9612020438209059} {'precision': 0.9606196988056085} {'f1': 0.9609107830829834}
0.1437 0.86 10000 0.1365 {'accuracy': 0.9599948269172738} {'recall': 0.9625010825322594} {'precision': 0.9573606684468946} {'f1': 0.9599239937813093}
0.1317 0.95 11000 0.1275 {'accuracy': 0.9616760788032935} {'recall': 0.9653589676972374} {'precision': 0.9579752492265383} {'f1': 0.9616529353405513}
0.125 1.03 12000 0.1428 {'accuracy': 0.9608138983489244} {'recall': 0.9522819780029445} {'precision': 0.9684692619341201} {'f1': 0.9603074101567617}
0.1135 1.12 13000 0.1627 {'accuracy': 0.960770789326206} {'recall': 0.9544470425218672} {'precision': 0.966330556773345} {'f1': 0.9603520390379923}
0.1096 1.21 14000 0.1240 {'accuracy': 0.9624520412122257} {'recall': 0.9566987096215467} {'precision': 0.9675074443860571} {'f1': 0.962072719355541}
0.1213 1.29 15000 0.1502 {'accuracy': 0.9616760788032935} {'recall': 0.9659651857625358} {'precision': 0.9574248927038627} {'f1': 0.9616760788032936}
0.1166 1.38 16000 0.1574 {'accuracy': 0.958873992326594} {'recall': 0.9438815276695246} {'precision': 0.9726907630522088} {'f1': 0.9580696202531646}
0.1214 1.47 17000 0.1626 {'accuracy': 0.9562443419407682} {'recall': 0.9773101238416905} {'precision': 0.9374480810765908} {'f1': 0.9569641721433114}
0.1064 1.55 18000 0.1653 {'accuracy': 0.9624089321895073} {'recall': 0.9622412747899888} {'precision': 0.9622412747899888} {'f1': 0.9622412747899888}
0.1046 1.64 19000 0.1608 {'accuracy': 0.9640039660300901} {'recall': 0.9697756993158396} {'precision': 0.9584046559397467} {'f1': 0.9640566484438896}
0.1043 1.72 20000 0.1556 {'accuracy': 0.960770789326206} {'recall': 0.9493374902572097} {'precision': 0.9712058119961017} {'f1': 0.9601471489883507}
0.0995 1.81 21000 0.1646 {'accuracy': 0.9602534810535845} {'recall': 0.9752316619035247} {'precision': 0.9465411448264268} {'f1': 0.9606722402320423}
0.1065 1.9 22000 0.1721 {'accuracy': 0.9627106953485365} {'recall': 0.9710747380271932} {'precision': 0.9547854223433242} {'f1': 0.9628611910179897}
0.1204 1.98 23000 0.1214 {'accuracy': 0.9629693494848471} {'recall': 0.961028838659392} {'precision': 0.9644533286980705} {'f1': 0.9627380384331756}
0.0852 2.07 24000 0.1583 {'accuracy': 0.9643919472345562} {'recall': 0.9624144799515025} {'precision': 0.9659278574532811} {'f1': 0.9641679680721846}
0.0812 2.16 25000 0.1594 {'accuracy': 0.9635728758029055} {'recall': 0.9572183251060882} {'precision': 0.9692213258505787} {'f1': 0.9631824321380331}
0.0803 2.24 26000 0.1629 {'accuracy': 0.9639177479846532} {'recall': 0.9608556334978783} {'precision': 0.9664634146341463} {'f1': 0.963651365787988}
0.0832 2.33 27000 0.1570 {'accuracy': 0.9631417855757209} {'recall': 0.9658785831817788} {'precision': 0.9603065266058206} {'f1': 0.9630844954881052}
0.0887 2.41 28000 0.1551 {'accuracy': 0.9623227141440703} {'recall': 0.9669178141508616} {'precision': 0.9577936004117698} {'f1': 0.9623340803309774}
0.084 2.5 29000 0.1585 {'accuracy': 0.9644350562572747} {'recall': 0.9613752489824197} {'precision': 0.96698606271777} {'f1': 0.9641724931602031}
0.0807 2.59 30000 0.1601 {'accuracy': 0.9639177479846532} {'recall': 0.9699489044773534} {'precision': 0.9580838323353293} {'f1': 0.9639798597065025}
0.079 2.67 31000 0.1645 {'accuracy': 0.9628400224166919} {'recall': 0.9558326838139777} {'precision': 0.9690929844586882} {'f1': 0.9624171607952564}
0.0913 2.76 32000 0.1560 {'accuracy': 0.9642626201664009} {'recall': 0.964752749631939} {'precision': 0.9635011243729459} {'f1': 0.9641265307888701}
0.0927 2.85 33000 0.1491 {'accuracy': 0.9649523645298961} {'recall': 0.9659651857625358} {'precision': 0.9637117677553136} {'f1': 0.9648371610224472}
0.0882 2.93 34000 0.1543 {'accuracy': 0.9652972367116438} {'recall': 0.966571403827834} {'precision': 0.9638169257340242} {'f1': 0.9651921995935487}

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
28,553
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vibhorag101/roberta-base-suicide-prediction-phr

Finetuned
(1282)
this model

Dataset used to train vibhorag101/roberta-base-suicide-prediction-phr

Evaluation results