|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: baseline-ft-mrpc-IRoberta-b-8bit |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
config: mrpc |
|
split: validation |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8970588235294118 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9257950530035336 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# baseline-ft-mrpc-IRoberta-b-8bit |
|
|
|
This model is a fine-tuned version of [vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized](https://huggingface.co/vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3871 |
|
- Accuracy: 0.8971 |
|
- F1: 0.9258 |
|
- Combined Score: 0.9114 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.0021 | 1.0 | 230 | 0.4017 | 0.8848 | 0.9147 | 0.8998 | |
|
| 0.0026 | 2.0 | 460 | 0.4105 | 0.8873 | 0.9173 | 0.9023 | |
|
| 0.0026 | 3.0 | 690 | 0.3707 | 0.8946 | 0.9236 | 0.9091 | |
|
| 0.0037 | 4.0 | 920 | 0.3893 | 0.8946 | 0.9228 | 0.9087 | |
|
| 1.324 | 5.0 | 1150 | 0.3871 | 0.8897 | 0.9204 | 0.9050 | |
|
| 0.0227 | 6.0 | 1380 | 0.3951 | 0.8897 | 0.9201 | 0.9049 | |
|
| 0.0081 | 7.0 | 1610 | 0.3818 | 0.8824 | 0.9155 | 0.8989 | |
|
| 0.0054 | 8.0 | 1840 | 0.3902 | 0.8873 | 0.9181 | 0.9027 | |
|
| 0.0383 | 9.0 | 2070 | 0.3659 | 0.8922 | 0.9225 | 0.9073 | |
|
| 0.3861 | 10.0 | 2300 | 0.4260 | 0.8652 | 0.9030 | 0.8841 | |
|
| 0.0028 | 11.0 | 2530 | 0.3619 | 0.8946 | 0.9234 | 0.9090 | |
|
| 0.0957 | 12.0 | 2760 | 0.3871 | 0.8971 | 0.9258 | 0.9114 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|