Resnet152-30VN / README.md
vuongnhathien's picture
Model save
81bc71e verified
|
raw
history blame
2.23 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-152
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Resnet152-30VN
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8353174603174603

Resnet152-30VN

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5769
  • Accuracy: 0.8353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.4198 1.0 275 0.7348 0.8741
0.565 2.0 550 0.8119 0.6347
0.2846 3.0 825 0.8310 0.6003
0.1727 4.0 1100 0.8410 0.6041
0.0835 5.0 1375 0.8461 0.6464
0.0534 6.0 1650 0.8565 0.6776
0.0283 7.0 1925 0.7107 0.8501
0.0186 8.0 2200 0.7066 0.8620
0.0111 9.0 2475 0.6772 0.8648
0.0096 10.0 2750 0.6898 0.8628

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2