Svngoku's picture
Update README.md
0825485 verified
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
language:
- en
- yo
- zu
- xh
- wo
- fr
- ig
- ha
- am
- ar
- so
- sw
- sn
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
datasets:
- vutuka/aya_african_alpaca
pipeline_tag: text-generation
---
# Llama-3.1-8B-african-aya
- **Developed by:** vutuka
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
## Unsloth Inference (2x Faaaaster)
```sh
%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
```
```py
max_seq_length = 4096
dtype = None
load_in_4bit = True # Use 4bit quantization to reduce memory usage.
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
```
```py
## Load the Quantize model
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "vutuka/Llama-3.1-8B-african-aya",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
```
```py
def llama_african_aya(input: str = "", instruction: str = ""):
inputs = tokenizer(
[
alpaca_prompt.format(
instruction,
input,
"",
)
], return_tensors = "pt").to("cuda")
text_streamer = TextStreamer(tokenizer)
# _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 800)
# Generate the response
output = model.generate(**inputs, max_new_tokens=1024)
# Decode the generated response
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract the response part if needed (assuming the response starts after "### Response:")
response_start = generated_text.find("### Response:") + len("### Response:")
response = generated_text[response_start:].strip()
# Format the response in Markdown
# markdown_response = f"{response}"
# Render the markdown response
# display(Markdown(markdown_response))
return response
```
```py
llama_african_aya(
instruction="",
input="Àwọn ajínigbé méjì ni wọ́n mú ní Supare Akoko, ṣàlàyé ìtàn náà."
)
```
## LlamaCPP Code
```sh
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" \
pip install llama-cpp-python
````
```py
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
## Download the GGUF model
model_name = "vutuka/Llama-3.1-8B-african-aya"
model_file = "llama-3.1-8B-african-aya.Q8_0.gguf"
model_path = hf_hub_download(model_name, filename=model_file)
## Instantiate model from downloaded file
llm = Llama(
model_path=model_path,
n_ctx=4096,
n_gpu_layers=-1,
n_batch=512,
verbose=False,
)
## Run inference
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
prompt = alpaca_prompt.format(
"",
"Àwọn ajínigbé méjì ni wọ́n mú ní Supare Akoko, ṣàlàyé ìtàn náà.",
"",
)
res = llm(prompt) # Res is a dictionary
## Unpack and the generated text from the LLM response dictionary and print it
print(res["choices"][0]["text"])
# res is short for result
```
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)