Edit model card

swin-tiny-patch4-window7-224-finetuned-plant-classification-finetuned-crops-classification

This model is a fine-tuned version of weightbot/swin-tiny-patch4-window7-224-finetuned-plant-classification on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4259
  • Accuracy: 0.8351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4225 1.0 183 0.3415 0.8703
0.4843 2.0 367 0.4024 0.8381
0.4679 3.0 550 0.4014 0.8385
0.4431 4.0 734 0.3986 0.8331
0.4263 5.0 917 0.4119 0.8351
0.3869 6.0 1101 0.4217 0.8278
0.3432 7.0 1284 0.4229 0.8305
0.3522 8.0 1468 0.4283 0.8347
0.3337 9.0 1651 0.4180 0.8301
0.2963 10.0 1835 0.4219 0.8366
0.3025 11.0 2018 0.4236 0.8335
0.2751 12.0 2202 0.4238 0.8366
0.271 13.0 2385 0.4314 0.8324
0.2416 14.0 2569 0.4229 0.8328
0.2507 14.96 2745 0.4259 0.8351

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for weightbot/swin-tiny-patch4-window7-224-finetuned-plant-classification-finetuned-crops-classification

Evaluation results