Edit model card

378A1_results_384_4cate_1

This model is a fine-tuned version of google/vit-base-patch16-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4707
  • Accuracy: 0.8997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8756 1.0 37 0.5714 0.7908
0.4508 2.0 74 0.3688 0.8418
0.2344 3.0 111 0.3064 0.8741
0.1445 4.0 148 0.2948 0.8946
0.0774 5.0 185 0.3461 0.8793
0.0393 6.0 222 0.3229 0.8997
0.0164 7.0 259 0.3441 0.9048
0.0222 8.0 296 0.4192 0.9099
0.0125 9.0 333 0.4443 0.8810
0.0029 10.0 370 0.4007 0.9116
0.0014 11.0 407 0.4277 0.9150
0.0003 12.0 444 0.4445 0.9014
0.0002 13.0 481 0.4437 0.9031
0.0002 14.0 518 0.4481 0.9048
0.0002 15.0 555 0.4512 0.9031
0.0002 16.0 592 0.4537 0.9014
0.0002 17.0 629 0.4562 0.9014
0.0002 18.0 666 0.4583 0.9014
0.0001 19.0 703 0.4594 0.9014
0.0001 20.0 740 0.4615 0.9031
0.0001 21.0 777 0.4635 0.9031
0.0001 22.0 814 0.4652 0.9031
0.0001 23.0 851 0.4659 0.9031
0.0001 24.0 888 0.4679 0.8997
0.0001 25.0 925 0.4681 0.9014
0.0001 26.0 962 0.4688 0.8997
0.0001 27.0 999 0.4695 0.8997
0.0001 28.0 1036 0.4701 0.8997
0.0001 29.0 1073 0.4706 0.8997
0.0001 30.0 1110 0.4707 0.8997

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wuru330/378A1_results_384_4cate_1

Finetuned
(23)
this model