xMaulana's picture
Update README.md
e4b7916 verified
---
language:
- id
license: apache-2.0
tags:
- Indonesian
- Chat
- Instruct
base_model:
- meta-llama/Llama-3.2-3B-Instruct
datasets:
- NekoFi/alpaca-gpt4-indonesia-cleaned
pipeline_tag: text-generation
model-index:
- name: FinMatcha-3B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 75.48
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 23.19
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.39
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.02
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.24
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct
name: Open LLM Leaderboard
---
![image/jpeg](https://huggingface.co/xMaulana/FinMatcha-3B-Instruct/resolve/main/image.jpg)
# FinMatcha-3B-Instruct
FinMatcha is a powerful Indonesian-focused large language model (LLM) fine-tuned from the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) base model. The model has been trained to handle a variety of conversation, with a special emphasis on understanding and generating Indonesian text.
This model has been fine-tuned on a wide array of Indonesian datasets, making it adept at handling the nuances of the Indonesian language, from formal to colloquial speech. It also supports English for bilingual applications.
## Model Details
- **Finetuned from model**: [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
- **Dataset**: [NekoFi/alpaca-gpt4-indonesia-cleaned](https://huggingface.co/datasets/NekoFi/alpaca-gpt4-indonesia-cleaned)
- **Model Size**: 3B
- **License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Languages**: Indonesian, English
## How to use
### Installation
To use the Finmatcha model, install the required dependencies:
```bash
pip install transformers>=4.45
```
### Usage
[Google Colab](https://colab.research.google.com/drive/14TuDacCjHDadOY9kFkRjvORgU-cEo3D8?usp=sharing)
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "xMaulana/FinMatcha-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer("Bagaimanakah sebuah negara dapat terbentuk?", return_tensors="pt").to("cuda")
outputs = model.generate(inputs.input_ids,
max_new_tokens = 2048,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=0.7,
do_sample=True,
top_k=5,
top_p=0.9,
repetition_penalty=1.1
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Limitations
- The model is primarily focused on the Indonesian language and may not perform as well on non-Indonesian tasks.
- As with all LLMs, cultural and contextual biases can be present.
## License
The model is licensed under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0).
## Contributing
We welcome contributions to enhance and improve Finmatcha. Feel free to open issues or submit pull requests for improvements.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_xMaulana__FinMatcha-3B-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |23.81|
|IFEval (0-Shot) |75.48|
|BBH (3-Shot) |23.19|
|MATH Lvl 5 (4-Shot)|12.39|
|GPQA (0-shot) | 2.57|
|MuSR (0-shot) | 5.02|
|MMLU-PRO (5-shot) |24.24|