whisper-small-eu / README.md
xezpeleta's picture
Add the link to the ggml file
28bac56
|
raw
history blame
2.29 kB
metadata
language:
  - eu
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Small Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 eu
          type: mozilla-foundation/common_voice_16_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 12.012786552211754

Whisper Small Basque

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_16_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1996
  • Wer: 12.0128

If you need to use this model with whisper.cpp, you can download the ggml file: ggml-small-eu.bin

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2009 1.04 1000 0.2446 17.6881
0.0759 2.09 2000 0.2102 14.2584
0.0264 3.13 3000 0.2200 13.6898
0.0633 5.02 4000 0.1955 12.5535
0.0199 6.06 5000 0.1996 12.0128

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2